Recognising
Spoken Digits

A Slidedoc by Alanna Manfredini




Project Background - Summary of Theory and Impact

In modern society there are many ways that speech
analysis can be used to improve individuals’ daily lives.
For example, ‘Siri’, the digital assistant on the iPhone, is
used by activating the Siri program, and speaking a
command to it. The iPhone will then analyse the
recorded frequencies from the voice, transform it into a
command, and execute said command (“What Can | Ask
Siri? - Official Apple Support”).

Siri and other Digital Assistants must be able to take the
frequencies of the spoken words, often spoken with
different accents and background noise, and determine
which words were spoken. Therefore the program must
be able to identify the characteristic elements of a word,
no matter the environment in which it was uttered. The
desire to identify elements led to the field of speech

analysis.

To determine the words uttered, each word may be
broken into its constituent phonemes. A phoneme is the
minimal contrastive unit of a word, where substituting
one phoneme for another changes the meaning of the
word (Binder et al., “Phoneme”). Basically, a phoneme

describes the unique sounds a word can be broken up

into, which can be interpreted as a word depending on
the order in which the phonemes are spoken.

As mentioned previously, high accuracy speech analysis
programs must not be affected by word variation:
allophones, equivalent phonemes that do not change the
meaning of a word must be taken into account (Binder et
al., “Allophone"). Analysis can be done by finding the
probability of a word being represented by a certain set of
phonemes and marginalising over the various allophones
that could have been substituted into the word. For
example, after an utterance of the word river, the
machine would combine the probabilities of the word
being pronounced in a British accent, /r1v.a'/, or an
American accent, /riv.2/ (Cambridge University Press). In
fact, for higher accuracy models, as well as phonemic
variation; temporal structure, the time over which a word
is spoken; prosody, the intonations in a voice that
distinguish meaning; voice timbre; and quality (Korvel et
al.), the emotion of a speakers’ voice may affect the
utterance sound and hence must be nuisance variables

incorporated into the model (Badshah et al.).

There are various approaches to analysing words, such as
Hidden Markov Models, Nearest Neighbours, Support
Vector Machines and Artificial Neural Networks. These
approaches often create a spectrogram of the utterance

and do visual analysis to the image. (Korvel et al.)

This project, however, worked with Mel Frequency
Cepstral Coefficients (MFCCs). MFCCs are determined by
first dividing the recorded sound into analysis windows.
Next the data is transformed by a Hamming Window to
minimise any bias due spectral leakage: the result when a
periodic function is estimated as non periodic (Alam et
al.). The equation for a Hamming window is

(1—i)[uz(l—zﬂ)+4nzﬂ]sin(5u)

v T (Goel and Singh).

i b=aly
LYV () =

Then the Discrete Fourier Transform (DFT) is taken of
each analysis window to produce a spectrum of
frequencies. The windows must be created since a FFT
assumes a stationary signal. Finally, the magnitude
spectrum produced by the DFT is warped into a Mel
Specturm. The Mel Spectrum represents how humans
hear certain frequencies. (Rudd et al.). Finally, an inverse
DFT is run to produce the MFCCs.



Project Background - Expectations and Applications

Expectations

This project aimed to created a program which could

accurately identify the Arabic digits from 0 through 9
(Table 1).

By determining a variety of models which can accurately
represent the clustering of the cepstral coefficients of the
data, it is possible to observe the bias variance trade-off
between models. A more flexible model requires much
more processing power and will create a very detailed
model which should fit the training data very accurately.
However, when it is tested on the testing data, since there
is a strong bias towards the training data, the testing data
may not be mapped as accurately. Conversely, with the
most rigid model, it will not have much bias because it is
set to such rigid constraints. Therefore it will not match
the testing data very accurately, due to a broad model

causing a poor fit.

By testing a variety of models, it is possible to find the
ideal point where there is a flexible but unbiased model,
which can accurately map the data. This was especially

evidenced in an initial model that is not included in this

slidedoc: the single phoneme seven. As can be observed
in a future slide, the variation of the MFCCs for digit seven
is very slight, making it look like there was only one
phoneme and only one cluster. However, if clustering was
done with only one cluster, all of the data for all of the test
digits would fit inside this cluster. Therefore it was
arbitrary which of the test data would fit the model, which
resulted in a model accuracy of 9.5%, with the model
actually predicting a seven to be four with a probability of
33%.

Applications of these Models

As mentioned previously, the most common application
of phonetic analysis is in speech to text programs. This
can been seen in digital assistants and dictation packages
commonly used on phones and in dictation during
radiology diagnoses. More recently there have been
breakthroughs in using a combination of audio and video
processing to create more accurate speech recognition.
This is yet another variable that could be incorporated

into the model (Biswas et al.).

Other applications of analysing audio recordings with

machine learning include determining the types of sounds
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would be in computer vision. By grouping like colours and
shapes, through patterns of rasterised pixels, in specific clusters,
it would be possible to determine if those colours or shapes

appeared in other images.

Another example of where clustering could be used is in
encryption decoding. If it is possible to detect clusters within a
code it would be possible to find if there is any filler code that
was intended to throw off the person trying to decode the

messages.

Similarly, genomes have large chunks of repeating DNA

sequences. As can be seen with AlphaFold, by grouping junk DNA,
it could be extracted from clusters of genes. This could be used to

determine an organism’s ancestry.



General Overview

The Data

Both testing and training data was downloaded from the
UCI Machine Learning Repository (UCI). The data was
presented in a .txt file. Each line of the file had 13 MFCCs
corresponding to a single analysis window. After
approximately 40 analysis windows there was a blank
line. This divided the data up into ‘paragraphs’, where
each paragraph corresponded to the data for a single
utterance of a digit.

In the training data, the first 660 utterances were for the
digit 0, the next 660 for the digit 1, etc. Within those 660
utterances, the first 330 were by males and the second
half were by females. Each 10 successive utterances were
by the same speaker. There were 6600 utterances by 66

speakers total for the training data.

Similarly, in the test data, the first 220 utterances were for
the digit 0, etc. These groups of utterances were likewise

divided by 50% male 50% female and each speaker
recited each digit 10 times. There were 2200 utterances by

22 speakers total for the testing data.

The Process

The data was parsed into a Python Pandas DataFrame of
16 column with a row for each utterance. The first 3
columns encoded the digit, speaker ID and speaker
gender. The next 13 columns corresponded to each of the
MFCCs. For example. a single cell in the “MFCC1” column

contained all the MFCC1s for a specific utterance.

The MFCCs for each digit were plotted and any sudden
change in cepstral coefficient value was noted as a
different phoneme. Therefore the number of phonemes
were able to be counted. Since, by definition, each
utterance of a specific digit should have the same number
of phonemes as another utterance of the same digit, the
data can be grouped into clusters where each cluster

corresponds to a different phoneme.

This clustering was determined using a kmeans and an

expectation maximisation method.

Testing data was fitted to these models and the accuracy
of the model classifying digits was presented in a

confusion matrix

The Models

Six models were run throughout this experiment. They
started with the most flexible model and decreased in
complexity towards the most rigid model. This resulted in
an ideal model which corresponded to the intersection of

the bias variance trade-off.
The first model used all 13 MFCCs and full covariance.
The second model had 4 MFCCs, with full covariance.

The third model used initialisation by dividing the data

into four rather than the kmeans++ default initialisation.

The fourth model increased the cluster numbers to try to

account for the transition periods between clusters

The fifth model divided the training data by gender as

well as digits. This was to try to account for the different
frequencies of male vs female voices. The probability of
the test data being in both the male and female models

for each digit were summed.

The sixth model was created with a diagonal covariance.

This was the most restrictive of the models.



Determining Phonemes - Initial Plotting

To determine the number of phonemes in each digit, a variety of plots of the MFCCs vs analysis windows were created. Whilst ideally all of
the utterances would have been plotted on top of each other, the data was not presented in a temporally scaled form, because the training
subjects did not speak the digits in the same amount of time and some of the recordings had silence before and after the digit. Therefore
plots of the MFCCs vs time for each utterance were shifted from each other temporally. Hence when all of the utterances were plotted on top

of each other, there was too much variation and the graph just became too noisy (a blob). To account for this, only the first 10 utterances

were plotted on top of each other. 10 was chosen as it appeared to be enough utterances that trends were able to be determined without

being influenced by any errors, but not so many that the temporal shifting obfuscated the delineations between phonemes.

Throughout this presentation, each MFCC is represented by a specific colour (Figure 1). The next three slides depict a plot of the MFCCs vs
analysis window as they were given in the data. For many of the plots, it is difficult to tell where the separation in phonemes are, but it is
possible to determine the general shape. As the slides progress, the MFCC changes are less obvious since the order of the MFCCs correspond
to the Fourier transform and hence the decreasing importance of the sinusoids that makes up the original frequencies. That being said,
however, it is important to have multiple MFCCs to analyse to determine the phonemes, because, for some of the digits, the first MFCC does
not have any variation over the word, even though it is the most important. Without any variation of the MFCCs, it is impossible to tell the

amount of phonemes in a word.

It is also interesting to note that there is no clear distinction between higher MFCC female voices vs lower MFCC male voices. This will be

further analysed in the second model.

MFCC 1
MFCC 2
MFCC 3
MFCC 4
MFCC 5
MFCC 6
MFCC 7

MFCC 8
MFCC 9
MFCC 10
MFCC 11
MFCC 12
MFCC 13

Figure 1. Phoneme Colours used

throughout the Presentation



10 Utterances of MFCC 1 vs Analysis Window for each Digit
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10 Utterances of MFCC 2 vs Analysis Window for each Digit
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10 Utterances of MFCC 3 vs Analysis Window for each Digit
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Determining Phonemes — Plotting with a Temporal Shift
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10 Utterances of Scaled MFCC 2 vs Analysis Window for each Digit
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10 Utterances of Scaled MFCC 3 vs Analysis Window for each Digit
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Creating Models for the Digits

After improving the plotting of the MFCCs vs analysis
windows to more explicitly emphasise the phonemes,
each of the MFCCs for a specific digit were plotted in
subplots. On these subplots it was possible to see if there
were any outliers in the MFCCs which may denote an
interesting way to model the data. Then, to find the
phonemes, the first 10 utterances of MFCC 1 were plotted
vs scaled and unscaled time axes and the first utterance
of all the MFCCs were plotted. The distinct phoneme
shapes for each of these plots were boxed and compared
to ensure the correct number of clusters would be
chosen.

Often one of the plots would be much more clearin
showing distinct phoneme groups than the others and
therefore having three methods increased the accuracy of
the choice of phoneme numbers.

By boxing the phonemes, it was possible to predict
whether the model would be affected by increasing the
cluster numbers to account for transition times.
Additionally, it was possible to tell whether certain MFCCs
may be dominant in certain digits over others due to

more severe changes between phonemes.

Kmeans

Kmeans is a clustering algorithm that is usually used for
data mining. (Jung et al.) It is an important mechanism for
minimising the distance between datapoints and the

cluster centres of the groups of datapoints. These cluster

centres are described by i = —ZX; ¢, X. (Barber)

L
||
In the execution of kmeans, the centres are determined
and then the datapoints closest to each centre is assigned
to the specific cluster corresponding to said centre. The
centres may be determined randomly, or may be
assigned. After the cluster assignments are done the first
time a new set of cluster centres are determined using the
previous formula and the process is repeated. The
process may be repeated for a number of iterations or

until the optimal centre and cluster assignments is found.

Kmeans is a reliable way of assigning clusters, however it
is highly dependent on the original initialisation. If the
original initialisation is very poor, datapoints may be
assigned to the incorrect clusters and the residual sum of
squares may converge to a local, not global, minimum

(“K-Means”).

Expectation Maximisation (EM)

Expectation Maximisation is also a clustering algorithm
used for data mining, however it involves assigning
probabilities datapoints are in a cluster rather than

assigning clusters specifically.

To assign these probabilities, the algorithm alternates
between guessing a probability distribution for the data
based off initial cluster centres (expectation) and re-
estimating model parameters using these probabilities
(maximisation). More specifically, expectation involves
finding the distributions that maximises log p(v|6) =
L({q},6) and the maximisation fixes g(h™|v™) and
maximises the model parameters. Often, as is seen
throughout this slidedoc, this involves assuming the
datapoints inside a specific cluster fall in a Gaussian
distribution. Therefore the probability of data being
inside a cluster is computed by the probability of the data
being picked from a gaussian distribution described by
the algorithms model parameters. The most important
model parameters are the cluster means, the cluster

covariances and the ”pi” probability values (Barber).
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Pairwise Companson of MFCCs 1- 5 for Digit O

Pairwise Comparison




Scaled MFCCs for 10 Utterances of Digit 0
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Digit 0: 13 Dim Clusters
Plotted in 2D
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Visualisations of the Importance of Various MFCCs for Digit 1
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Comparison of Three Phoneme Analysis Techniques for Digit 1
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Digit 1: 13 Dim Clusters Plotted in
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Visualisations of the Importance of Various MFCCs for Digit 2
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Comparison of Three Phoneme Analysis Techniques for Digit 2
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Digit 2: 13 Dim Clusters Plotted in 2D
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Visualisations of the Importance of Various MFCCs for Digit 3
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Digit 3: 13 Dim Clusters Plotted in 2D
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Visualisations of the Importance of Various MFCCs for Digit 4
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Comparison of Three Phoneme Analysis Techniques for Digit 4
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Digit4: 13 Dim Clusters Plotted in 2D
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Visualisations of the Importance of Various MFCCs for Digit 5
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Comparison of Three Phoneme Analysis Techniques for Digit 5
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Digit 5: 13 Dim Clusters Plotted in 2D
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Visualisations of the Importance of Various MFCCs for Digit 6

Pairwise Companson of MFCCs 1- 5 for Digit 6
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Comparison of Three Phoneme Analysis Techniques for Digit 6
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Digit 6: 13 Dim Clusters Plotted in 2D
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Visualisations of the Importance of Various MFCCs for Digit 7
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. A
/
/ |\
04 f |
/ \
Scaled MFCCs for 10 Utterances of Digit 7 - — / " '

[}
=
o
>
=
=
@
=2
b=
[
o
o
©
4
=2
?
aQ
oy
o]

MFCC 4

0.0 25 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
Analysis Windows Scaled Between 0-10

MICC )




Mel Frequency Cepstral Coefficient Value

Very minimal
Change
Between

Phoneme

Comparison of Three Phoneme Analysis Techniques for Digit 7

3 Phonemes

5.0 -
2.5 -
0.0 -
—2.5-
~5.01
5.0 -
2.5 -
0.0 —— MFCC1
—2.51 —— MFCC 2
— MFCC 3
_50- —— MFCC 4
—— MFCCS5
5.0 - MFCC 6
MFCC 7
2.5 - MFCC 8
MFCC 9
0.0 —— MFCC 10
—2.51 — MFCC 11
MFCC 12
~5.0 - —— MFCC 13

Analysis Windows




gnments for First 2 MFCCs of Digl
|

uster Cemters

KMeans Cluster Assignments for First 3 MFCC




Digit 7: 13 Dim Clusters Plotted in 2D
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Comparison of Three Phoneme Analysis Techniques for Digit 8
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Maximum Likelihood Classification (MLE)

Maximum Likelihood Classification is a process by which a parameter is estimated to be the value for which the data is most likely
(Li and Jain). This involves creating a variety of models with training data and then fitting testing data to these models to see which

matches the most accurately.

In Equation 1, it can be observed that a probability for the data, x,,, is found given that it is fitted to some model, A, defined by the
mean, m, and covariance, d, of a gaussian mixture model. Each of these probabilities for the is normalised by the likelihood that it is
within a specific cluster, m,,. The normalised probabilities for each of the clusters is summed together and then each of these results

are multiplied together for each piece of data in a dataset.

This equation shows that the maximum likelihood classification involves finding the probability of the data fitting a specific model,

and then it is possible to find the model which has the maximum probability for the data matching it.

To increase the complexity of a model extra latent or nuisance variables may be added. An example of this within this project is the
separation by gender. To ensure the clusters were not being affected by the frequency of the speakers’ voice, a model was created
from the female testing data that was separate to the model from the male testing data for each digit. This means the testing data
was fitted to both models and the probability of it being in the male digit k and the female digit k were summed together. Therefore

the equation would have an extra variable to sum over so the right hand side would look like p(X|A4, [14) =

N l
nn:lzgn=afgmale Tm,aP (Xn|Bma |gendery).

Maximum likelihood is well suited for this problem, because there are specific, discrete, results that are meant to come out of this

problem, but there may be variation to the model which causes inaccuracy.

p(X|Ag, y) = N1 2 1T aP (X | Ay )

Equation 1: Maximum Likelihood
Classification (Tantum)



Bias Variance Trade-off

The Bias Variance Trade-off is an important consideration to make when forming a model. When designing a model, a certain number of parameters must be chosen. With more parameters, a
model can account for more of the variables that affect the data, however, when more parameters are added, there is a higher likelihood that the model will be matched very closely with the
training data, but may not be able to be extrapolated accurately to the testing data. Herein lies the bias variance trade-off. The aim is to create a model which is complex enough to account for

all of the parameters, but which is not so complex that the variance between datasets is not able to fit comfortably within the model.

Bias is categorised by the minimisation of error so that E{e?} = E{(y, — $)?} + E{n?} where e is the error, y,, — ¥ is the difference between the true output and the model output and n is the

noise. Therefore the equation can be written as (model error)? = (bias error)? + variance error.

These equations clearly show that as a models complexity increases the bias error decreases but the variance error increases. Therefore, if a model is too specific, the (bias error)? term will

dominate the equation. The bias error is due to the structural inflexibility of the model and can be represented as y,, — E{9}, where y, is the noise free output and J is the model output.

The variance error is due to the model being complex enough that it maps directly to its dataset. For example, if there was a single dataset which could be perfectly approximated by a 37 order
system, but a second dataset looked completely different, to have the same level of zero bias between the two data sets' models the second model would have to be considerably different to
the first. This difference between the two models is the variance. To simplify equations needed to calculate the difference between models, the variance error can be calculated as the

deviation of the model parameters from their perfect values.

To minimise the model error, it is important to have a very large training set. If the training data is theoretically infinite, the model will not change, no matter the testing data it is given, because
the variation would have already been accounted for in one of the previous training datasets. Additionally, if the model has infinite input parameters, the bias error will go to zero , because

every point is mapped perfectly. (Nelles)

In a non-theoretical situation these requirements translate to having as many pieces of training data as possible and including as many parameters in the model as is realistic. In this

experiment 660 training datasets for each digit were used and various models had different parameters in order to find the optimal model without trading variance and processing time.
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Overall Model Comparison

In this experiment a model was run with all the cepstral coefficients and four of the cepstral coefficients. Since the four
dimensional models were much less accurate than the 13 dimensional models for future work it would be important to find the
point where there is diminishing returns by adding an extra coefficient. Due to the shapes of the MFCC graphs this will probably

be 7. Various models were run and different models suited different digits better.

In Table 10, it can be observed that the inclusion of more MFCCs results in a better model, which can be seen by the dominance
of Model 1. In the third column, however, there are the promising models which all had features which performed well despite
having few MFCCs. Most interestingly is Digit 8, which appeared to have success with a rigid model and performed well under full

covariance, increasing the cluster numbers and separating by gender, but only when run with an EM algorithm.

These results clearly demonstrate the bias variance trade-off, because some digits were more accurately categorised with a rigid
model whereas some where categorised well with a flexible model. This can certainly be linked to the graphs of the MFCCs and
show that Digit 7, for example had minimum variation in its phonemes, and thus performed well with a flexible model that could
pick up on that small variation. Alternatively digit 6 and 7 performed much better with a rigid model, because they had very
distinctive phoneme patterns. In fact, digit 6 performed well under all the models, but excelled under the kmeans models: a

model which is much more rigid than the EM model.

Model 1 EM

Model 1 EM

Model 1 EM

Model 1 EM

Model 1 EM

Model 1 EM

Model 1 KM

Model 1 EM

Model 1 EM

Model 1 KM

Model 4 EM

Model 3

Model 5 KM

Model 5 EM

Model 3

Model 6 EM

Model 6 KM

Model 6 EM

Model 2,4 and 5
EM

Model 4 EM and
Model 6 KM

Table 1: Model Comparison per Digit
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Collaborations

Who did you share and debate ideas with while working on this project?

Rebecca Edelman and | worked next to each other for some of the project. This involved debating our approaches for the different sections.

Who did you share code with while working on this project?

I did not share lines of code with anyone.

Who did you compare results with while working on this project?

Rebecca Edelman and | compared plots and confusion matrices to ensure we were both making similar progress towards the expected outcomes

Who did you help overcome an obstacle and vice versa while working on this project?

Rebecca Edelman and | would help each other whenever we ran upon an issue. This involved trouble shooting each others’ code



