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Summary of Theory and Impact - BCI
The first insight into how the brain controls movement was made in the 19th century and showed that the cerebral
cortex sent electrical signals from the brain to the spinal column. In fact the signals which enter the cerebral
cortex appear there by way of the cerebellum. One of the oldest evolutionary sections of the brain (Evarts). The
cerebellum is located in very close proximity to the brain stem at the back of the brain (Kazilek). In this
experiment, values are plotted on the brain in order from the front left hand side of the brain to the back right
side of the brain. It can be expected that the values from the cerebellum will be further back in the brain and thus
correspond to the higher numbered electrodes. Using a model with the left hand side as class 1 and the right
hand side as class 2, the electrode weights will be negative for values that are determined to be in class 1.

An incredible feature of the brain is that imagined movement and actual movement activate the same parts of the
brain without delay. In fact, if one imagines performing an exercise rather than actually performing the exercise
their muscle mass increases by 22% rather than 30%. This highlights that although imagined movement does not
activate the brain and body to quite the same degree as actual movement, it is highly correlated (Decety). This
allows us in an experiment to compare results from cerebellum activation from imagined vs actual movement.

The importance of this experiment is because of the increased focus in understanding neuroscience, modelling
the human brain in neural networks and using brain interfaces. By being able to accurately classify how someone
wants to move their hands, if there is a problem with their spinal chord, a medical profession could scan their
brain and use a mechanical substitute to complete their intended task even without the individual having control
of their limbs. An modern example of brain computer interfaces is Neuralink. This company aims to improve the
lives of people with paralysis by recording the electrical signals in the brain and translating them into the control
of an external device. Much of the training is done by asking an individual to imagine moving their hand in
certain motions, similar to this experiment (“Neuralink”). Although we do not know what type of machine learning
models they are using, the applications of methods such as SVM to brain computer interfaces are currently being
investigated and will have a massive impact on the future of medicine.

Image 2– Cerebellum Location (Kazilek)



Data
The Overt and Imagined data
were provided in two files
each, one for the first class and
one for the second class. Each
class represents imagining
movement in a hemisphere of
the brain. Overt data is from
test subjects physically moving
their limbs in either the left or
right direction. Imagined data
is from test subjects who are
imagining moving their limbs
in a certain direction. Each
dataset had 120 trials with the
value from 204 electrodes in
each trial. These 204 values
come from 102 sensor
locations with two electrodes
at each position. The first row
of plots depict the value of the
maximum sensor reading for
each position in the brain for
two Imagined and two Overt
trials respectively. The
following eight plots visualise
the true value of each of the
sensors across the brain.



Summary of Theory and Impact - SVM
Support vector machines (SVMs) are a type of machine learning model which classify 
discrete outcomes (classes); in the case of this experiment they aim to classify whether a 
person is thinking about moving their left or right arms. The SVM acts as a geometric way 
to think about dividing these few classes. If the data is in p dimensions, the two sets of 
data can be separated with a p - 1 hyperplane.  As is pictured on the right, all of the data 
is in two dimensions and the hyperplane is in one dimension, or a line. 

The solid line is the boundary and is defined by maximising the distance between the
points on either side of the line. However, some datasets cannot be separated merely by 
a flat hyperplane in p-1 dimensions. Thus the data is projected into a higher dimensional 
space using a ‘kernel’ and the plane splits the higher dimensional space rather than the 
original data. This can be observed in plot b, c and d on the right. In image b one can 
imagine the orange data being projected out of the plane of the page and the blue data 
being projected into the plane of the page. Thus the plane of the page can split the two 
datasets and result in the yellow and green delineations. 

An advantage of SVMs is that not all of the data is needed to define the model. For
example, in image a, only the orange point closes to the boundary and the blue point
closest to the boundary are needed for the boundary to take into account the distance 
from each. This means that considerably less data is needed to still have an accurate 
classification of the different classes. The dimensions of the data do not affect the 
classification because the hyperplane is merely in p - 1 space and not dependent on 
individual features in different dimensions. (Marc Peter Deisenroth et al.)

Image 2– SVMs with different kernels (Marc 
Peter Deisenroth et al.)



What is Cross Validation
Cross validation is used in Machine Learning to ensure that the model created accurately predicts the data.
Since, in a real life scenario, a scientist does not have data to test whether their model is accurate, the training
data is split into various groups called folds. The model is then trained with all of the folds except one and then
tested on the other folds. This is repeated until different models have been trained with all of the data and
tested on all of the data (Müller and Guido).

This project uses a two level cross validation to ensure that the models are representative of the data and to
ensure that the model is being tested with the best possible hyperparameters.

The data is first split into six folds: I, II, III, IV, V and VI. Fold I is set aside for training and a model is trained on
Folds II, III, IV, V and VI. However, what is unique about two – level cross validation is that rather than just training
a single model on II, III, IV, V and VI, multiple models are trained on these folds with different hyperparameters.
In this second layer, II is set aside and a model is trained with the first hyperparameter, in this case ‘C’ = 0.0001,
on III, IV, V and VI. This is then cross validated by testing on III, IV, V and VI respectively with different models
trained with ‘C’ = 0.0001 and the other four respective folds.

The advantage of using this method is that the hyperparameters are optimised at the same time the model is
optimised and verified. Thus the most effective model can be chosen and used for predictions.



Channel Weights - Imagined

Ranking Weights Index

1 0.00400469 187

2 0.00338697 151

3 -0.00290085 155

4 0.00252529 140

5 0.00247934 153

6 0.00229667 123

A model for the Imagined data was created using
the two level cross validation technique described
in the previous slide. The first fold of the cross
validation was taken and the weights the model
assigned were visualised in different ways. The value
of the weights of the electrodes are shown in the
plot on the top right. The absolute value of these
same values are plotted on the brain image below.
The absolute value is used because positive values
represent a high likelihood that the movement is
class 1 movement, but a negative value is class 2
movement. For this experiment, it is important to
consider both left and right movement and thus it is
important to consider the maximum positive and
maximum negative values. To do this, the absolute
value of the magnitudes are plotted to show the
parts of the brain that are most important to
determining movement. Similarly, the electrodes
with the six most important weights were
determined in a table. It is clear to see that the
highest peaks and lowest troughs on the first plot
match the indices of the highest magnitude
electrodes as expected.

Table 1 – Weights of Six Highest 
Magnitude Electrodes



Channel Weights - Overt

Ranking Weights Index

1 0.00155942 140

2 0.00131596 154

3 -0.00128183 136

4 -0.00105102 185

5 0.00092672 151

6 -0.00088954 128

Table 2 – Weights of Six Highest 
Magnitude Electrodes

The same plots as were on the previous page were repeated for the Overt data. Similarly to the
Imagined data, the back of the brain had the electrode values that were the most important for
determining movement. Interestingly, by comparing with the Imagined brain plot of the
electrode weights, the highest Imagined weights were on the order of 0.002 but for the Overt
data the highest weight was only 0.0016. This is interesting because throughout the analysis it
was clear that the Overt model was more accurate than the Imagined model, as is expected
because more neurons are expected to fire when someone is physically moving their limbs
rather than just thinking about moving them. Therefore the higher weight shows the model’s
reaction to noise by weighting important electrodes higher to avoid bias. The most important
electrode weights were located at the back of the skull, in the same location as readings from a
cerebellum, as expected.



Imagined ROCs
In the two level cross validation, an
optimal model was chosen for each of
the six folds. This model was tested on
the respective testing fold and the results
were plotted on an ROC. The decision
statistics for all of the test scenarios were
then aggregated to determine the
average accuracy of each model. Various
models performed differently on their
testing data, however the accuracy stayed
comfortably between 0.835 and 0.88. As
is clear from visual analysis the aggregate
ROC was representative of the CV
models.

It is important to note that although there
appear to be discrepancies such as
Model 2 appearing to be the worst on
the ROC plot but having an accuracy of
0.85, (which is much higher than model
3’s accuracy of 0.835) this is not the case
because the ROC was created from
testing on the top level cross validation
fold, but the accuracy score was created
from the inner CV fold using the
“best_score_” accuracy value from
GridSearchCV.

Model Accuracy

1 0.865

2 0.85

3 0.865

4 0.835

5 0.875

6 0.88

Aggregate 0.86

Table 3 – Model Accuracy Scores



Overt ROCs
As was expected from looking at prior
literature, the ROC curves for the
Overt data were much higher and
more consistent than the Imagined
data. When someone moves their arm
there is a much more predictable set
of neurons firing than when someone
thinks about moving their arm.
Because of this, it is easier to get an
accurate model and thus any
predictions are more accurate.

Additionally, because the data is more
clear for all the Overt trials, it is easier
to predict Overt movement, and thus
Overt predictions are more consistent
across folds.

For the Overt ROC, it is possible to tell
that the aggregate accuracy and the
aggregate ROC are in the middle of
the other models as expected. The
spread of accuracy values for the
Overt test was only 0.03 further
highlighting that it is a reliable model.

Model Accuracy

1 0.94

2 0.92

3 0.92

4 0.935

5 0.95

6 0.925

Aggregate 0.932

Table 4 – Model Accuracy Scores



Regularisation Parameters

Model No. Imagined C Overt C

1 0.0001 0.0001

2 0.01 0.0001

3 0.01 0.0001

4 0.0001 0.0001

5 0.0001 0.0001

6 0.0001 0.0001

During the GridSearchCV process, the regularisation constant was optimised
for the model of each fold. The strength of the regularisation is inversely
proportional to the C values (sklearn.svm.svc). The possible values that the
algorithm tested were C = [0.0001, 0.01, 1, 100, 10000]. As can be seen in the
table below, the C value chosen for all of the Overt models was 0.0001. Since a
smaller C value causes a more restricted model wherein individual datapoints
have less influence (Müller and Guido), it clearly shows that the Overt model
had more clear delineations between the left and right hemispheres and thus
needed less information to accurately classify the data. On the other hand, a
few of the Imagined C’s were of a much higher order of magnitude than the
Overt C’s, which supports the postulate that the Imagined model must be more
complex to accurately pick up on the delineations between different classes
over the surrounding noise; it is imperative that the noise does not change the
datapoint and thus they should be made to have less influence.

Table 5 – Regularisation Constant for CV Models



ROC Compare
In the plots on the right, a model is trained using the optimal
regularisation parameter and then it is tested on various datasets. When
the data is tested on the same data it is trained on, incestuous training,
the ROC is perfect. When the data is trained on the Imagined data and
tested on Overt data, the accuracy of the model is higher than when the
model is trained on the Overt data and tested on the Imagined. This is
due to the inherent noise in the Imagined dataset.

Because the neurons fire less specifically when someone imagines
moving their arm rather than actually moving their arm, there is more
noise within the data. As was previously discussed, since the Overt model
has a very small C it is a more simple model than the Imagined model.
Thus, when applied to the more noisy Imagined data, the model
performs worse. On the other hand, since the Imagined model is trained
on more noisy data, it must be fitted more closely to the true boundary
between classes to correctly classify. Thus, when it is tested on the less
noisy Overt data it is more likely to correctly classify.

If I were able to design the training data to have a different quality, I
would increase the noise slightly. Clearly the models are still performing
well with cross testing, but by including noise in the original model it
results in a more complex model that divides the boundaries between
classes more accurately. Of course, increasing the noise during training
too much may result in a faulty model, so a balance must be made to
account for the bias- variance trade-off.



Explorations
To further explore Support Vector
Machines, an RBF model was used. A
Radial Basis Function model transforms
the data into a higher dimension to
separate any data which would have a
nonlinear boundary into two sections that
can be separated by a linear hyperplane.
This is explained in further detail on the
SVM slide.

Clearly the RBF did not improve the
model much, although the runtime for the
model creation was much shorter. The
reasoning behind why the RBF did not
improve the model is because the data
was already so clearly linearly divisible.

In summary, the RBF was an unnecessary
model to run, but if further experiments
were run with more complicated
demands from the brain, perhaps such as
moving the same limb one direction or
another, the data may be more closely
packed and a non linear kernel could be
effective.



Future Work and Conclusions

In the future it would be interesting to further explore choosing certain models from the 
cross validation and testing with them. Additionally, using other similar modelling 
methods such as RBF could be interesting to explore. On first hypothesis, however, since 
the data is clearly linearly separable, it is not necessary to define the data by its centre of 
mass, since the boundary is the more accurate representation of the division. RBF’s are 
better at characterising data that does not have a linear kernel. 

In conclusion, this experiment was very interesting, because it was possible to identify the 
clear link between imagined and actual movement, and possible to characterise which 
way an individual was moving based on their brain signals. The location of the cerebellum 
was very obvious since the most highly weighted sensors were all located at the back of 
the skull. The linear SVM model chosen was very effective at characterising the different 
classes, but would perform better if trained on imagined data due to the increased noise. 



Collaborations
Who did you share and debate ideas with while working on this project?

I did almost all of the project entirely alone. During class discussions I worked with Matthew Blume and Joanna Peng and we cogitated 
about the different ways to display the change in alpha, because they were so similar between the six models for both experiments. 

Who did you share code with while working on this project?

I did not share code with anyone during this project.

Who did you compare results with while working on this project?

To ensure that my results were of the correct order of magnitude I asked Joanna Peng whether her weights were of the order of 0.01. I 
also asked her whether her ROC’s with the best model were perfect. During one of the checkpoints I discovered that my ROC which 
wasn’t perfect was supposed to be perfect and this was because I had my data transposed. 

Who did you help overcome and obstacle and vice versa while working on this project?

Ben Matz and I discussed what the aim was for the cross validation, because I was unsure whether the data should be split once manually 
and then once using GridSearchCv or whether GridSearchCv already split the data into two levels. We also discussed whether the optimal 
method for choosing the model to do the Imagined Overt Cross Testing was by choosing the model with the best accuracy score and or 
by training a new model with the best regularisation parameters decided by the cross validated models.

I helped Aryan Mathur decide how to create an aggregate ROC by using the decision statistics from previous models in the cross 
validation
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