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Background – Summary of  Theory and Impact

In modern society, millions of images, often in the form of videos, are
transmitted across the internet and stored every second. When an
image is stored on a computer, it must be compressed and then
decompressed to avoid a single image taking up a ubiquitous amount
of storage space. When said image is compressed, the maximum
redundant data in the image are dropped to minimise the storage
consumed (Sha). Thus when the image is decompressed it must have a
mathematical technique to restore the image with the same quality as
the original. On the other hand, images are often corrupted by
physical means: an old photograph may have been faded from the sun.
Both of these situations require an algorithm to recognise the missing
data in the image and fill in the missing spaces with the best
approximation of what data used to be there. The method used
throughout this project uses Discrete Cosine Transforms and LASSO
regression.

Discrete Cosine Transforms

An image can be divided into a number of dxd sized chips which are
comprised of superimposed cosine waves with different weightings.
The transformation of the image into a set of coefficients, one
corresponding to the weighting of each wave, is called a Discrete
Cosine Transform (DCT) (Tan and Gan). This process is done when
compressing images so only the string of coefficients has to be sent
rather than every pixel value: the size is thus reduced to the square
root of the original number. Additionally, since many of the
kkkkkkkkkk

coefficients are zero or can be approximated as zero without any visual 
loss in clarity, the list of coefficients can be further compressed 
through Huffman encoding (Weik). 

LASSO Regression

When reconstructing a corrupted image, the weighting of the DCT 
cosine waves that would achieve the intensity of each sensed pixel is 
found. Thus, using the intensity of the given pixels, LASSO regression 
must be performed to find the coefficients that match said intensity. 
When finding a model for datapoints regression is performed to 
penalise the amplification of a parameter and avoid overfitting. The 
loss function is 𝑦 − ΦΘ ! + 𝜆 Θ !

where 𝜆 is the regularisation 
parameter and controls the “strictness” of the model. LASSO 
regression stands for least absolute shrinkage and selection operator. 
In this regression the L-1 norm is specifically chosen, to compensate 
for sparse datapoints (Marc Peter Deisenroth et al.). Images are 
considered sparse because when corrupted many of the pixels 
(datapoints) are “off” and therefore provide minimal information (Di 
Gesù). Additionally, images have similar colours near each other which 
further reduces the complexity of the data, and, since images can be 
represented through wavelet transforms, the recursive nature of the 
wavelet drives most of the coefficients to zero (Dimililer and 
Kavalcıoğlu). Throughout this project it is possible to observe the 
impact that the sparsity of an image has on the convergence of models 

and the regularisation parameter. After the image is reconstructed 
using LASSO regression, the image is filtered with median filtering. 

Median Filtering

Median filtering is used to reduce gaussian and random noise. 
Throughout this process, the image was reconstructed block by block 
and then tessellated back together. This method meant that adjoining 
blocks had clearly different colour without transition between them. It 
works by running through each pixel and replaces it with the median 
of its neighbouring pixels. (Kaufmann). It therefore this removes any 
outliers includeing noise. (Huang et al.) Different shapes of 
neighbouring windows are used depending on the amount of filtering 
needed or the direction of filtering (Pitas and Venetsanopoulos). An 
increase in size of the filter window smooths the final image and 
different shaped windows are more appropriate for different noise 
distributions, for example images with smaller percentages of impact 
noise added are better approximated by a Z-shaped window than a 
square window (Appiah et al.). A median filter is chosen, because it is a 
non-linear filter. Median filters aim to reduce outliners, whereas other 
filters such as a mean filter merely smooths an image or a high pass 
filter which cuts off all frequencies lower than a certain value and thus 
doesn’t deal with upper limit outliers or pixels which are supposed to 
have a low frequency. The mean squared error was found for both the 
filtered and unfiltered reconstructed images to highlight the 
improvement smoothing can have on reducing noise in an image. 



Original Images

Left: Boat Image 
(200x192pxl)

Right: Nature Image 

(512x640 pxl)

These images were 
loaded from a .bmp 
file and visualised 
with a PIL package



Corrupted Boat Images

The first step of the project was to corrupt the images so that they could then be reconstructed. Each block of an image was taken, rasterised and then a
certain number (S) of random pixels were removed. Each block was then reconstructed into a full image. Pictured below is the boat image that has been
corrupted by removing a specific number of pixels in each block. Moving from left to right the number of pixels removed are 14, 24, 34, 44 and 54 leaving 50,
40, 30, 20 and 10 sensed pixels respectively. It is interesting to note that as a human it is easy to distinguish the original image despite much of it being missing;
this highlights that humans are able to distinguish trends across entire images rather than just blocks, something that is not explored in this project.
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Corrupted Nature Images

As was explained on the
previous slide, the images
were split into blocks, each
block was corrupted and
then the image was
reconstructed. The ”S”
number represents the
number of sensed pixels
remaining
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Basis Vector Images

Basis Vector Images form the compression and 
decompression of  many image types including jpegs 
(Sha). An image can be divided into sets of  square 
blocks which can then be tessellated back together. 
Every block of  an image is the result of  superimposing 
a set of  cosine waves, pictured to the right, on top of  
each other. Each of  these waves is weighted to make 
the unique block in the image (Tan and Gan).
In the image to the right the block size is 8x8. This is 
the size of  each wave image and also the number of  
possible waves. 

Cosine wave group (“DCT”)



Boat Basis Vector Images

This basis vector images was produced by rasterizing each of  
the wave images in the previous slide. Each column 
corresponds to a different wave image moving vertically 
down the group of  wave images. Every row of  the basis 
vector image corresponds to a pixel in a block. Therefore, by 
using all the pixels in a block as datapoints the approximate 
weighting of  each wave can be found. 
When reconstructing the image, these weighted coefficients 
can be applied to every wave and they can be superimposed 
which results in the rest of  each 8x8 block being 
approximated. The act of  breaking an image into coefficients 
of  cosine waves is called the Discrete Cosine Transform.



Nature Basis Vector Images

As was described on the previous slide, the cosine 
waves can be rasterized and used to form a basis vector 
image which can in turn be used to estimate the 
Discrete Cosine Transform coefficients. 

The image on this slide is considerably larger than the 
previous slide because each block is 16x16 pixels. 
Therefore every block must be made of  256 different 
cosine waves layered on top of  each other. This image 
is 256 pixels that correspond to each pixel in the block 
x 256 different cosine waves.



Undetermined Linear Systems

Undetermined linear systems are especially important to solve in cases of  
rank-deficiency, situations which are evident in sparse image reconstruction. 
They must be dealt with by requiring “smoothness” of  a function. 
Additionally, a term must be added to account for ill-determined inversed 
whilst still ensuring smoothness, the regularisation parameter. Most commonly, 
ill-posed problems are in situations where datapoints in a vector are function 
values of  a function (Neumaier). 



LASSO Regression

Reconstructing a corrupted image requires creating a model for many
coefficients from few datapoints. LASSO regularisation is a commonly utilised
method for high dimensional problems, problems where the number of
unknown parameters is higher than the number of observations. (Gauraha) In
this case LASSO is chosen as the regularisation approach because images have
𝑑' pixels that must be estimated by 𝑑' cosine functions, but there may be as
few as 10 pixels to inform the creation of the model.

A norm is a function which assigns a length to each vector. Different norms
can be categorised in different ways such as the Euclidian norm where the
length = Σ𝑥(' or the 𝑙), Manhattan norm, where length = Σ 𝑥𝑖 (Marc Peter
Deisenroth et al.).

LASSO is characterised by the 𝑙) norm and is used because manhattan
distances ensure that the fuction is convex and produces sparse solutions
(Lederer).

Regularisation is the addition of an extra term into the formula to produce
)
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y − 𝑋𝑤 ' + 𝛼| 𝑤 | where 𝛼 or 𝜆 acts to restrain the magnitude of the
coefficients in the model and minimise variance. This penalty term is a way to
compromise between the complexity of a solution and the accuracy of a
iffiiisss

Figure 1: Visualisation of Overfitting without LASSO (Lederer)

model. In an image where there is only a few datapoints, it is critical that the
model does not overfit to these points to cause massive variation in intensity
of the pixels that are being reconstructed. Generally, images have many pixels
of the same colour next to each other so any overfitting can make an image
appear very noisy (Marc Peter Deisenroth et al.).



LASSO – Regularisation Constant

When reconstructing images, the vector basis matrix is cropped to leave only the rows 
corresponding to the retained pixels. Thus, we are left with a non-invertible matrix. The 
equation 𝐷 = 𝐴𝜅 can then be solved with LASSO Regression in the form %
%

|
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𝐴𝜅 −
𝐷 + 𝜆|𝜅| where A is the cropped basis vector matrix, D is the sensed pixels and 𝜅 is 
the Discrete Cosine Transform coefficients. This equation was previously stated as 
!
"# y − 𝑋𝑤

"
+ 𝛼| 𝑤 |.

An important thing to note, however, is that A, the cropped basis vector matrix has a 
column which has all of  its components with equal magnitude. Since the intercept of  a 
regression is already accounted for in the development of  the model,  the constant 
column could dominate the regression and affect the convergence of  the model. 
Therefore the constant column is cut from the basis vector matrix and the coefficient 
corresponding to that cosine wave is determined from the intercept of  the model.



Boat Block Reconstruction

To reconstruct the whole image, each
corrupted block was reconstructed with
LASSO regularisation. When trialling different
alpha values it was determined that 𝛼 = 0.1
had the best MSE for this block. This block,
chosen by a formula related to my name, does
not have much colour diversity.
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As the sparsity in this image increases, so does
the optimal value for alpha. The optimal value
for S = 40 is 𝛼 = 0.5. Both of these images
have flat lines on the left hand side. This can
be attributed to lack of convergence for these
values of alpha. A small alpha is equivalent to
L1 regression and thus does not converge with
sparsity.



Boat Block Reconstruction

As the sparsity increases
there is less and less diversity
in the pixel colour across the
block. In the last image, S =
10, there is no change in
alpha, because it did not
converge for any of the
values. The reason that it did
not converge is because
there is minimal change over
the pixel values and thus the
regression is trying to drive
all of the coefficients to zero.
Thus alpha does not have a
significant impact on the
regression and the model is
independent of alpha.

S64



Nature Block Reconstruction

As was done with the boat blocks, the Nature
blocks were corrupted and reconstructed
individually. The alpha value was similarly
approximately 0.1 for the best MSE. It can be
observed in the plot below that the model
failed to converge with the smaller alpha
values.
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This set of models had a much more clear
alpha which minimised the MSE. It is
interesting to note that the dark spot in the
block is not in this reconstruction because the
randomised corruption has cut out pixels in
that area.



Nature Block Reconstruction

As was mentioned on the
previous slide, the dark spot
appears in some of the
reconstructions (S=30), but
does not appear in a
reconstruction which
theoretically has more
information (S=40). This
highlights that to find true
analytical values of alpha and
MSE the corruption and
reconstruction must be run
multiple times to avoid
cutting out any crucial data.
Similarly to the Boat Block
Reconstruction, S = 10 did
not converge and appeared
to almost be a flat grey
square. There is less diversity
in this reconstruction that
the boat S=10 because there
is proportionally less
information : 10/64 vs
10/256.
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Reconstructed Boat

The method which was used to reconstruct the individual blocks in the previous slide was used to reconstruct an entire image. The corrupted boat images that
were attached earlier were split into 8pixel x 8 pixel blocks and then each block was reconstructed individually. It is possible to see this in the S10 image, because
there are very defined blocks that show the general trend of the sampled pixels in that location. Visually and numerically the error of each image increases as the
number of sampled pixels increases. This was expected, since there is less information to do the regression with. It is interesting to note that the first image is
not perfect. This is interesting, because when images are split into their cosine waves, there is no noise and yet the regression could not find the perfect model.
The error in the image increases significantly when there is less information. The Mean Squared Error for S10 is almost twice that of S20 whereas this trend is
not evident elsewhere.
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Introduction to Median Filters

In the reconstructed images pictured on the previous slide, the delineations
between each individual reconstructed block is very obvious. Thus, filtering is
used to improve image quality after applying LASSO and smooth the
transition between the edges of each block. A median filter takes the center
pixel of group of a specified size and replaces it with the median of all the
other pixels in the group. This is a non-linear filter and therefore works very
well at preserving edges unlike other filters such as a mean filter (Banerjee et
al.). Median filters effectively reduce noise because noise presents itself as
outliers and thus will never be the median of the group of reconstructed
images. Additionally, edge preservation is crucial for human interpretation of
images.

Unfortunately, if an image is already highly detailed, the filter will remove the
finer details such as small lines. In the filter used throughout this project, the
size of 3x3 was used, which means any line of width 1 would be removed
(Davies). A median filter is still selected over a type of linear filter because
linear filters are highly influenced by random noise and do not preserve abrupt
changes. This is important for image reconstruction because the noise
produced during LASSO is random and does not follow a normal distribution
(Fried and George).

Median filtering also has the added advantage that it can be iterated, the image
can be re-filtered after the initial filtering to further smooth the image
(Kleefeld et al.). As can be observed below, filtering an image without noise
and one with noise have very similar outcomes.

Figure (clockwise from top left):
Image, Median Filtered Image,
Filtered version of the Image with
Added Noise, Image with Added
Noise (Kleefeld et al.)



Filtering

Median filtering is chosen over filtering techniques such as low pass or high pass filtering, because it reduces noise whilst preserving crucial image
details. Filters work by reducing the disparity between pixel values of neighbouring pixels

Low Pass filtering only allows pixels with an intensity below a
certain threshold to be let through. Because of this, any high
intensity variation is cut out of the image, which subsequently
destroys any image structures present in the original image (Burger
and Burge). Due to this, low pass filters are good for removing
Gaussian noise, but distort the image if they are used to remove
impulse noise in an image (Davies and Netlibrary).

High Pass filtering is utterly inappropriate for use filtering an image
because it only lets values above a certain threshold remain. Due to
this, it filters out the pixels that are supposed to be in the image and
amplifies the noise. High Pass filtering is sometimes used for
sharpening an image, however the image must have very minimal
noise to be effective (Davies).

Figure 1: Evidence of blurring during Low-
Pass filtering of an image by simple Gaussian
convolutions (Davies and Netlibrary).



Reconstructed Boat – Median

Each of the reconstructed images that were attached to the previous slides were filtered using a median filter. A median filter acts to
smooth out edges between different blocks. It is possible to tell this visually when comparing the unfiltered reconstruction of S10 and
the filtered reconstruction of S10 below it. The filtered reconstruction appears to be more blurry than the unfiltered one. As is explored
later, the MSE of the median filter is reduced when the edges are softened in the cases with less sensed pixels.

Median filters work well eliminating noise. It is possible to observe “speckling” on the reconstructed image, but this is removed once
the median filter is applied on top.
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Visualisation of  Regularisation Parameter

The regularisation parameter of each block is visualised below as a pixel intensity. The intensity varies across the pixel but follows a couple of trends,
which can be understood by visually comparing the parameters to the details of the superimposed image. Most of the interesting regularisation
parameters are on the sky, masts and cables in the image. These are locations with few details. Since there are few details, the coefficients of a least
squares model would be very high and aim to overfit to the few diverse values. Thus the regularisation parameter at these locations is much higher
than in other locations so the variance between models is reduced and thus the bias variance trade-off is optimised. The S10 model does not have any
variation in model parameter because none of the blocks had enough data for the regression to converge.
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Reconstructed Nature

The Nature image was split
into blocks, corrupted and
reconstructed with various
amounts of sensed pixels.
The block division is even
more obvious when only 10
of 256 pixels remain in the
S10 image
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Reconstructed Nature - Median
Similarly to the boat image, a
median filter of size 3 was
applied to the reconstructed
images. The median filter
smoothed the edges of the
blocks. The MSE was much
more minimally reduced by the
S10 median filter than it was on
the boat image.
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Visualisation of  Regularisation Parameter

As was seen in the visualisation
of the boat’s regularisation
parameter the more sparse
regions have higher regularisation
constants. In the nature this is
the foliage on the trees and the
rocks. This is especially evident in
S=50 and S=30.
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MSE vs Sensed Pixels

As the number of  sensed pixels in a block decreases the amount
of  data points the regeression algorithmis working with also
decreases. Thus the accuracy of  the models produced are reduced
and the MSE increases with decreasing number of  sensed pixels
in a block. 
In the images to the right, the mean squared error greatly
increases for fewer sensed pixels. Interestingly, the change in MSE 
between S=20 and S=10 for the boat image is considerably higher
than the change in MSE between S=20 and S=10 for Nature. 
Whilst proportionally the Nature image had a much smaller
percentage of  the pixels in a block that are sensed, the image must 
be much more uniform over each block. 



Normalised MSE vs Sensed 
Pixel Comparison

In the plot it is clear that median filtering has a 
closely related, but slightly varying impact on the 
MSE of  an image. For the higher numbers of  
sensed pixels the median filter increases the MSE, 
but for the lower values of  sensed pixels the 
median filter decreases the MSE. 

As explained on previous slides, the median filter
smoothes variation in an image: for a 3x3 filter
any lines of  width 1px are eliminated. Therefore, 
for the images with a great number of  sensed
pixels there is a higher likelihood that intricate 
details are actually a result of  a detailed image 
rather than noise. Conversely, when the corrupted
image has very few sensed pixels the mean
squared error of  the median filter is lower
because there is minimal of  the original picture’s
detail remaining and all of  the pixel variation
eliminated by the filter is due to noise in the 
reconstruction.



Reconstructed Boat – Median Size = 20

Self exploration was undertaken to see what a massive increase in the size of the median filter would result in. As can be observed in
the images below all of the reconstructions except S=10 have almost the exact same MSE. The median filter removed any small details
any smoothed out areas of similar intensities. It is important to note, however, that it is no longer possible to observe the reconstruction
blocks for each image. The image blocks are considerable smaller than the median filter size and thus any variation in blocks was
removed by being considered as a noisy detail.
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Reconstructed Nature – Median Size = 20

Similarly to the boat image, a large
median filter reduces image detail.
However, to a human observer, I
believe the large median filter
makes it easier to determine what
the image is. The S=10 image is
incredibly interesting, because the
block shapes are reduced, but it
produced a diagonal fractal
pattern throughout.
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Self  Motivated 
Explorations

With the filter size equal to 20 much of  the image 
detail is lost. It is very surprising how much the 
S=10 nature image’s MSE is reduced by a large 
median filter. This clearly shows that the rigid 
separation of  the reconstruction into blocks is not 
effective when there are very few datapoints. 

In general, the MSE is increased with a large
median filter, but it is possible that the division 
between individual blocks can have a very large 
impact on sparse reconstructions. This is however, 
not the case for the boat which has an even 
smaller block size.



Future Plans

Based off  my self  exploration of  the median 
filters it would be interesting to run a variety of  
median filters and determine which size of  
median filter is the most effective for the 
corresponding number of  sensed pixels. 

I would also like to try reconstruction of an
image, median filtering and then replacement of  
pixels with their corresponding original pixels. It
would be interesting to see the effect of this on
both the MSE and to a human visual 
interpretation.Data Analytics Shape the Future of Earth Observation 

https://www.geospatialworld.net/blogs/future-of-earth-observation/



Collaboration

Who did you share and debate ideas with while working on this project?

Apart from during our class discussion, I did not debate any ideas with others outside class-time. 

Who did you share code with while working on this project?

I did not share code with anyone during this project.

Who did you compare results with while working on this project?

I compared results with Joanna Peng at a few stages of  this project.

Who did you help overcome and obstacle and vice versa while working on this project?
Joanna Peng helped me overcome and issue with what I should do with models that did not converge. I did not help others.
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Closing Thoughts

Recovery isn’t Linear – The Importance of Realistic Recovery 
https://youmatter.988lifeline.org/recovery-isnt-linear-the-importance-of-realistic-recovery/


