
Criminal Recidivism Prediction

Alanna Manfredini

December 6, 2023

1 Background

1.1 Introduction

Compared to other democracies around the world, America has one of the highest incarceration rates.
In fact, the US prison population has grown 500% within the last 30 years [1]. Naturally, this massive
increase in incarceration has put a strain on the American Justice system, and, in North Carolina,
has led to average disposition times for non traffic-misdemeanours and felonies of 172 and 259 days
respectively [2].

Due to this, it would be highly advantageous for the criminal justice system to only keep those who
are likely to commit a future crime, recidivate, incarcerated. This would reduce the number of people
in jail, and also reduce the number of preventable recidivism cases from returning back into society,
committing a crime and having to be reprocessed by the Criminal Justice System. With the increase
of the accuracy of predictions by machine learning and AI models, it is important to test whether
this process could be streamlined with technology by using individuals’ criminal histories to determine
whether said person is likely to commit another crime, and, if not, set them up for early release.
This streamlining is crucial as it could greatly reduce the strain on the Criminal Justice System, thus
improving the quality of the remaining trials; can free those who are wrongly incarcerated; and can
prevent future crime from happening. The possibility of early release could also have the knock on
effect of increasing good behaviour during prison sentences. The situations analysed in this paper are
’general two year’,’general six month’, ’drug two year’, ’property two year’,’misdemeanor two year’,
’felony two year’, ’violent two year’, ’drug six month’, ’property six month’, ’misdemeanor six month’,
’felony six month’, ’violent six month’, ’any recid’

1.2 Data Description

The ”Broward data.csv” data for this project was found open source at https://github.com/BeanHam/
2019-interpretable-machine-learning/tree/master/broward/data. The data was previously pro-
cessed by machine learning researchers to only include the data with which the Arnold PSA can be
calculated. Additionally, the data was processed to create 6 month and 2 year recidivism outcome
columns, exclude minor offenses and exclude any non-realistic data such as people being over the age of
150. More detailed explanations of how the data was processed prior to being uploaded in the Github
source is available in section 11.2 of the original paper [3].

To visualise the data, the data was divided into male and female and each of the non-binary
features were plotted against each other, Figure 1 and 2. This provided insight into whether certain
features were expected to be more highly correlated than other features. Additionally, it was easy to
identify outliers in the data, for example, it is possible to tell that in the male data, one individual was
documented as having his ”first charge” at age 0. This is almost certainly impossible, but since it was
a single outlier, the datapoint was left in as it seemed likely that having another datapoint was more
likely to improve the fit than the single outlier would disturb the fit. Another potential mistake that
could be easily identified by the pairwise plotting was that one individual had 218 charges. This is
much higher than the second highest which sits at approximately 80. A final noteable outlier was the
male who had 60 counts of voyeurism, 10x higher than the second highest count. Within the female
dataset, two women had over 50 total convictions, which is considerably higher than the average of
around 20. These datapoints were left in, because although they were much higher, the number of
charges was still within the realistic realm.

1

https://github.com/BeanHam/2019-interpretable-machine-learning/tree/master/broward/data
https://github.com/BeanHam/2019-interpretable-machine-learning/tree/master/broward/data

During the experiments, the data was randomly shuffled and then divided into an 80-20 training
test split. The random shuffling was to ensure that there were no inherent biases in the data that
would become evident when split linearly. The test data was not used at any point throughout the
experiment except initial plotting of datapoints and final accuracy scoring.

The full pairwise plots are included in Figure 1 and 2. In these plots every non-binary feature is
plotted from top to bottom. For the female plots the features are ’age at current charge’, ’age at first
charge’, ’p charges’, ’p probation’, ’p felprop viol’, ’p felassault’, ’p misdeassault’, ’p weapon’, ’p fta
two year’, ’p fta two year plus’, ’p pending charge’, ’p felony’, ’p misdemeanor’, ’p violence’, ’total
convictions’, ’p arrest’, ’p property’, ’p traffic’, ’p drug’, ’p dui’, ’p domestic’, ’p stealing’, ’p trespass’.

For the male plots the features are ’age at current charge’, ’age at first charge’, ’p charges’, ’p
probation’, ’p juv fel count’, ’p felprop viol’, ’p murder’, ’p felassault’, ’p misdeassault’, ’p sex offense’,
’p weapon’, ’p fta two year’, ’p fta two year plus’, ’p pending charge’, ’p felony’, ’p misdemeanor’,
’p violence’, ’total convictions’, ’p arrest’, ’p property’, ’p traffic’, ’p drug’, ’p dui’, ’p domestic’, ’p
stalking’, ’p voyeurism’, ’p fraud’, ’p stealing’, ’p trespass’.

It is interesting to note that the female dataset had no counts of voyeurism greater than one. A
small snapshot is included of the male plot for ease of viewing.

Figure 1: Female Full Pairwise Feature Plot

2

Figure 2: Male Full Pairwise Feature Plot

Figure 3: Male Partial Pairwise Feature Plot

3

1.3 Previous Work

The work of this project is based off ”In Pursuit of Interpretable, Fair and Accurate Machine Learning
for Criminal Recidivism Prediction Pursuit ” [3]. This paper aims to build upon the results of the cited
paper; it uses the same dataset, but intends on determining whether there are other algorithms which
can achieve better outcomes for prediction. Both papers aim to use interpretable machine learning
algorithms which return results that are not biased towards certain demographics. The algorithms
chosen in this paper aim to determine whether less complex, more linear models can just as effectively
predict criminal recidivism. Unlike the cited paper, which explores using decision trees and random
forests, methods that split the data by a hierarchy of features, the models in this paper use algorithms
which address all features at the same time. This could mean that any closely correlated features
enhance the fit rather than are masked as are in a decision tree. Additionally, the models in this paper
are primarily constructed to work with continuous variables, as is in the Broward Dataset.

2 Methods

Four algorithms were chosen to fit to the data. Since there were relatively few datapoints, 251 for
women and 1703 for men, the algorithms that were chosen because they were efficient, handled outliers
well or did not make assumptions about the data. Additionally, most of the algorithms chosen were
ideal for predicting binary outcomes rather than continuous ones. All algorithms were tuned using
GridSearchCV [4]. To increase the comparability of the models, all models were evaluated based off
the accuracy of their predictions.

The first algorithm chosen was a Support Vector Machine [4]. Support Vector Machines split classes
in the data using a hyperplane; the data can be transformed to higher dimensions using a kernel. This
effectively means the data can be split with a shape that is not a hyperplane. This type of algorithm
is good at efficiently finding the split between two classes in high dimensions. After looking at the
data, it was determined that it was unlikely the outliers would be the support vectors and thus this
algorithm was likely to be uneffected by said outliers. Additionally, since it is a simple model, it
is easy to interpret the results and determine the influence of the various features. This is especially
important in Criminal Recidivism where the outcome of the algorithm can have a life-changing positive
or negative influence on both the convicted and potential future victims. This model was implemented
by optimising with respect to the kernel, C and gamma hyperparameter. The algorithm was trained
with the linear and rbf kernel. These were chosen because they are the most rigid and the most
flexible kernel respectively. This means that the optimal choice of kernel for each situation provides
more insight into the structure of the data and thus can be more easily compared to future algorithms.
The C and gamma values, 0.1, 1, 10, 100 for both, were chosen because they span the expected range
for C and gamma.

The second algorithm implemented was an Adaboost additive model algorithm [4]. Adaboost
combines many weak learners, in this case SVMs, into a strong learner. This makes it robust to
noise and can create a very complex algorithm based off simple algorithms. The base estimator was
chosen to be an SVM so it would be easy to compare with the first algorithm. Theoretically, the
use of many weak learners should produce a better outcome than a single SVM. A tradeoff between
the two algorithms is that the computational efficiency of the Adaboost model is considerably lower
than the single SVM. Whilst this is the case, in situations such as Criminal Recidivism computational
inefficiency is a small trade-off for an improvement in the outcome. The Adaboost hyperparameters
that were tuned were the number of estimators, 10, 50, 100; and learning rate, 0.001, 0.01, 0.1, 1.0.
These were chosen because they span the realistic values for each parameter. Additionally, the C value
of the base estimator was tuned in an external loop. This was done by implementing the Adaboost
algorithm for C = 0.1, 1 and 10, taking the accuracy of each and choosing the Adaboost model with
the best C for each recidivism situation.

The third algorithm was a K-nearest neighbours (KNN) algorithm [4]. KNN determines the clas-
sification of the testing data by looking at the closest ”k” points and determining which is the more
common class within this subset. This algorithm was chosen because it is also robust to outliers and
does not make any assumptions about the underlying distribution. Since KNN works to merely classify
based on the closest surrounding datapoints, if there are some features which have a poor delineation
between the classes, the KNN algorithm should still have success classifying the test data.

4

The number of neighbours, the weight and p were the hyperparameters chosen to train. The span for
the number of neighbours had to be quite large, because the female and male models were determined
using the same function; since the size of the respective datasets were vastly different, the number of
neighbours had to be appropriate to both sizes. The p values were chosen to see whether different
distance metrics would have different effects on the outcome of the algorithm. This can be compared
to the hyperparameters in different models, further elucidating whether the classes are linearly spread
out amongst the features or not. Finally the weights were tuned to highlight the spread of the data
and determine whether the classes change quickly without a clear delineation, thus making distance
important or whether the classes are well separated, thus meaning that any of the close N neighbours
are relevant.

The final algorithm was a Ridge Regression model [4]. This choice was less theoretically ideal
than the previous choices, especially since it is mostly used as a regressor, not a classifier, but was
made because Ridge Regression is good at handling multicollinearity. After plotting the initial data
it was clear that a lot of the features were very highly correlated, for example, the number of arrests,
charges and convictions is obviously going to have a strong relationship. Secondly, ridge regression was
chosen because it is good at handling noise and small datasets. The final hyperparameters tuned were
the alpha and the solver for the Ridge Regression model. These hyperparameters were chosen after
some experimentation. Initially only numbers surrounding the common alpha value of 1 were chosen.
However, after implementation, all of the alphas chosen were highest alpha provided to the GridSearch
algorithm. This clearly indicated that the alpha should be higher for the model and thus the possible
values was expanded to include higher numbers. This was effective, because after implementation there
was a spread of alpha values that created the most accurate model. The solvers which most closely
matched previous modes or which were more stable were chosen to iterate on.

3 Experiments

3.1 Results

General Drug Property misdemeanour Felony Violent
Female Train 0.756 0.930 0.920 0.766 0.886 0.861
Female Test 0.78 0.92 0.92 0.86 0.84 0.86
Male Train 0.629 0.902 0.961 0.949 0.959 0.957
Male Test 0.594 0.909 0.962 0.953 0.965 0.953

Table 1: SVM Accuracy - 2 Year (Rounded for Display Purposes)

General Drug Property misdemeanour Felony Violent
Female Train 0.836 0.965 0.955 0.896 0.945 0.940
Female Test 0.88 0.96 0.96 0.96 0.92 0.96
Male Train 0.954 0.961 0.987 0.977 0.910 0.910
Male Test 0.953 0.953 0.988 0.974 0.891 0.915

Table 2: SVM Accuracy - 6 Month (Rounded for Display Purposes)

General Drug Property misdemeanour Felony Violent
Female Train 0.662 0.930 0.920 0.751 0.886 0.861
Female Test 0.7 0.920 0.920 0.86 0.84 0.86
Male Train 0.644 0.903 0.914 0.715 0.825 0.787
Male Test 0.597 0.909 0.903 0.756 0.803 0.768

Table 3: SVM Adaboost Accuracy - 2 Years (Rounded for Display Purposes)

5

General Drug Property misdemeanour Felony Violent
Female Train 0.841 0.965 0.955 0.896 0.945 0.940
Female Test 0.88 0.96 0.96 0.96 0.92 0.96
Male Train 0.776 0.961 0.949 0.869 0.910 0.910
Male Test 0.774 0.953 0.947 0.885 0.891 0.915

Table 4: SVM Adaboost Accuracy - 6 Month (Rounded for Display Purposes)

General Drug Property misdemeanour Felony Violent
Female Train 1.0 0.930 0.920 0.746 0.891 0.886
Female Test 0.68 0.94 0.92 0.86 0.84 0.86
Male Train 0.627 0.902 0.914 1.0 1.0 1.0
Male Test 0.582 0.909 0.903 0.765 0.803 0.782

Table 5: KNN Accuracy - 2 Year (Rounded for Display Purposes)

General Drug Property misdemeanour Felony Violent
Female Train 1.0 0.965 0.960 0.900 0.950 0.945
Female Test 0.88 0.96 0.96 0.96 0.92 0.96
Male Train 0.999 0.961 0.953 0.869 1.0 0.914
Male Test 0.776 0.953 0.95 0.886 0.894 0.915

Table 6: KNN Accuracy - 6 Month (Rounded for Display Purposes)

General Drug Property misdemeanour Felony Violent
Female Train 0.692 0.935 0.920 0.766 0.886 0.861
Female Test 0.68 0.92 0.92 0.84 0.84 0.86
Male Train 0.642 0.902 0.913 0.713 0.823 0.784
Male Test 0.571 0.909 0.9 0.765 0.788 0.765

Table 7: Ridge Regression Accuracy - 2 Year (Rounded for Display Purposes)

General Drug Property misdemeanour Felony Violent
Female Train 0.841 0.965 0.955 0.896 0.945 0.940
Female Test 0.88 0.96 0.96 0.96 0.92 0.96
Male Train 0.776 0.961 0.949 0.869 0.911 0.910
Male Test 0.776 0.953 0.957 0.885 0.891 0.915

Table 8: Ridge Regression Accuracy - 6 Month (Rounded for Display Purposes)

6

3.2 Hyperparameter Selection

The best hyperparamters were chosen using GridsearchCV [4]. The cross validation was executed
with five random folds. To avoid overfitting the data, the hyperparameter tuning was done with cross
validation on hyperparameters relevant to loss and regularisation.

Recidivism kernel C gamma
Female Parameters
General 2yr linear 10 -
General 6mo linear 0.1 -
Drug 2yr rbf 0.1 0.1
Property 2yr linear 0.1 -
Misdem 2 yr linear 0.1 -
Felony 2yr rbf 0.1 0.1
Violent 2yr rbf 0.1 0.1
Drug 6mo rbf 0.1 0.1
Property 6mo linear 0.1 -
Misdem 6mo linear 0.1 -
Felony 6mo linear 0.1 -
Violent 6mo rbf 0.1 0.1
Male Parameters
General 2yr linear 0.1 -
General 6mo rbf 1 1
Drug 2yr linear 0.1 -
Property 2yr rbf 1 0.1
Misdem 2 yr rbf 1 1
Felony 2yr rbf 1 1
Violent 2yr rbf 1 1
Drug 6mo linear 0.1 -
Property 6mo rbf 1 1
Misdem 6mo rbf 1 1
Felony 6mo linear 0.1 -
Violent 6mo linear 0.1 -

Table 9: Support Vector Machine - Hyperparameter Selection

7

Recidivism C Number Estimators Learning Rate
Female Parameters
General 2yr 0.1 10 0.01
General 6mo 1 10 0.1
Drug 2yr 0.1 10 0.001
Property 2yr 0.1 10 0.001
Misdem 2 yr 10 100 0.01
Felony 2yr 0.1 10 0.001
Violent 2yr 0.1 10 0.001
Drug 6mo 0.1 10 0.001
Property 6mo 0.1 10 0.001
Misdem 6mo 1 10 0.001
Felony 6mo 0.1 10 0.001
Violent 6mo 0.1 10 0.001
Male Parameters
General 2yr 10 50 0.01
General 6mo 0.1 50 0.01
Drug 2yr 0.1 10 0.001
Property 2yr 0.1 100 0.01
Misdem 2 yr 1 50 0.001
Felony 2yr 10 100 0.01
Violent 2yr 10 100 0.01
Drug 6mo 0.1 10 0.001
Property 6mo 0.1 10 0.001
Misdem 6mo 0.1 10 0.001
Felony 6mo 1 100 0.1
Violent 6mo 0.1 10 0.001

Table 10: SVM Adaboost - Hyperparameter Selection

8

Recidivism Number Neighbours p Weights
Female Parameters
General 2yr 25 3 Distance
General 6mo 10 10 Distance
Drug 2yr 2 0.5 Uniform
Property 2yr 10 3 Uniform
Misdem 2 yr 10 1 Uniform
Felony 2yr 5 100 Uniform
Violent 2yr 2 1 Uniform
Drug 6mo 2 0.5 Uniform
Property 6mo 2 2 Uniform
Misdem 6mo 2 2 Uniform
Felony 6mo 5 2 Uniform
Violent 6mo 2 0.5 Uniform
Male Parameters
General 2yr 50 1 Uniform
General 6mo 25 5 Distance
Drug 2yr 10 5 Uniform
Property 2yr 10 0.5 Uniform
Misdem 2 yr 50 10 Distance
Felony 2yr 25 3 Distance
Violent 2yr 25 1 Distance
Drug 6mo 10 0.5 Uniform
Property 6mo 5 5 Uniform
Misdem 6mo 10 0.5 Uniform
Felony 6mo 10 1 Distance
Violent 6mo 10 1 Uniform

Table 11: KNN - Hyperparameter Selection

9

Figure 4: Hyperparameter variation

Figure 5: Hyperparameter variation

It is interesting to observe that the hyperparameters do not have much impact except for on the
models which already have a very low Mean Test Score. At the lower values of number of neighbours,
Figure 4, 5, has a strong impact even on the higher scoring models, but not as much as on the lower
scoring models. This makes sense because the number of neighbours is very important to how well the
fit is, especially if the dataset has a lot of outliers, like this one does.

10

Figure 6: Hyperparameter variation

Figure 7: Hyperparameter variation

11

Recidivism Alpha Solver
Female Parameters
General 2yr 1000 LSQR
General 6mo 1000 LSQR
Drug 2yr 1000 LSQR
Property 2yr 1000 SVD
Misdem 2 yr 1000 Cholesky
Felony 2yr 10000 LSQR
Violent 2yr 10000 LSQR
Drug 6mo 10000 LSQR
Property 6mo 1000 Cholesky
Misdem 6mo 1000 LSQR
Felony 6mo 1E6 SVD
Violent 6mo 1E6 LSQR
Male Parameters
General 2yr 1000 LSQR
General 6mo 10000 Cholesky
Drug 2yr 1000 SVD
Property 2yr 10000 LSQR
Misdem 2 yr 1000 SVD
Felony 2yr 10000 LSQR
Violent 2yr 10000 Cholesky
Drug 6mo 1000 SVD
Property 6mo 10000 Cholesky
Misdem 6mo 10000 Cholesky
Felony 6mo 10000 Cholesky
Violent 6mo 10000 SVD

Table 12: Ridge Regression - Hyperparameter Selection

3.3 Visualisation

The figures included in this section are the ROC curves for the female and male test models. The train
ROC curves are included in the Appendix.

The ROC curves do not show particularly good performance. This is especially true for the Male
curves. Some models perform much better than others, and some even appear to be inverted below
random. This is not a problem, because the model can merely be flipped. The female SVM ROC
has all the data either along the random line or a single line above it. This is interesting because it
highlights that the different outcomes can be predicted in a very similar way.

12

Figure 8: Test ROCs

Figure 9: Test ROCs

13

Figure 10: Test ROCs

Figure 11: Test ROCs

14

Figure 12: Test ROCs

Figure 13: Test ROCs

15

Figure 14: Test ROCs

Figure 15: Test ROCs

16

3.4 Variable Importance Analysis

The variable importance for the Adaboost and Ridge Regression models are plotted below. The x axis
of the plots is each feature in order of ’age at current charge’, ’age at first charge’, ’p charges’, ’p incar-
ceration’, ’p probation’, ’p juv fel count’, ’p felprop viol’, ’p murder’, ’p felassault’, ’p misdeassault’, ’p
famviol’, ’p sex offense’, ’p weapon’, ’p fta two year’, ’p fta two year plus’, ’current violence’, ’current
violence’, ’p pending charge’, ’p felony’, ’p misdemeanor’, ’p violence’, ’total convictions’, ’p arrest’, ’p
property’, ’p traffic’, ’p drug’, ’p dui’, ’p domestic’, ’p stalking’, ’p voyeurism’, ’p fraud’, ’p stealing’,
’p trespass’, ’six month’, ’one year’, ’three year’, ’five year’.

Figure 16: Variable Importance 1

In the female, Figure 16, and male Adaboost model, Figure 17, each model appears to favour
different features. Interestingly, for male misdemeanor 2 years and felony 2 years, ”current violence”
and ”p weapon” were almost the entire model. The rest of the features were around the order of 1E-6.
This is unsurprising, because the original data had strong correlation between these features. The
female model was even less conclusive with variable importance. All the variables have different scales
of importances in each model and no features appear to be outliers for any models.

Similarly, the Ridge Regression models, Figure 18, 19, do not have any clear outliers in variable
importance. In the female models for both general models, both misdemeanors and drug 6 months,
the most important variable was ”p probation”. This is a surprising trend that is more than likely due
to social structures.

17

Figure 17: Variable Importance 2

Figure 18: Variable Importance 3

18

Figure 19: Variable Importance 4

19

4 Insight

4.1 SVM Model

The SVM model performed quite well on the dataset. Generally the accuracy for both the female and
male test set was around 0.9. Additionally, most of the training accuracies were slightly above, but
close to, the testing accuracies. This highlights that the models did not overfit. There were a couple
of aberrations where the test accuracy was higher than the train accuracy. This can most likely be
attributed to ’good luck’ in the model, which was exacerbated by the limited number of data. This
hypothesis is affirmed by the fact that the male testing data has much fewer testing results that were
better than training results than the female testing data. The highest performing models were in the
female drug, property, misdemeanour and violent models at 96% and the 6 month male Property model
at 94.7%. The lowest performing model was the general 2 year model. For the female models it sat
at 78% and for the male model it sat at 59.4%. In the female models, almost all of the C parameters
were 0.1, except for the most broad outcomes, general 2 year. This highlights that the algorithm found
that there did not need to be a large penalty for misclassification in any of the cases except the general
cases. This makes sense as the general cases have much more data which can be influential and thus
it is important to not overfit to the many nuances of each of the features. Additionally, in all the rbf
models, the gamma is very low which aims to reduce overfitting to the data. Potentially because the
general model is linear, since they are effectively a combination of all the other models, to make the
model smoother the higher C compensated for the lack of rbf smoothing seen in some of the more
specific models.

In the male models, the C is relatively low overall; however, interestingly, the general C value is
amongst the smallest. Additionally the gamma for most of the rbf functions are higher than the female
gammas. Both of these characteristics could be because the male dataset had more datapoints. Thus
there was a more clear boundary between classes and the model could fit to that boundary without
overfitting outliers by using a higher gamma. The C value may have been smaller for the general model
because of the same reason; misclassifications with a tight fit were less likely to happen and less likely
to be penalised.

4.2 Adaboost Model

The Adaboost model also had the general 2 year model perform the worst. This was at 70% and 59.7%
respectively. Most of the other models performed well except for the male violent and misdemeanour
2 year models. The violent model’s poor performance is most likely because an rbf kernel is needed.
For most of the models, the optimal number of estimators was 10 for female and 50 for male. This
difference is expected, because with more datapoints it is more likely to be more effective to have a
lot of weak estimators using different datapoints rather than creating estimators with a large majority
of the data. Finally the learning rate of most of the estimators was very low. Clearly it is important
that the model does not overfit to the data. The average female learning rate was lower than the male,
which could be attributed to the lack of datapoints and thus potential occurrences of underfitting to
avoid being influenced by outliers.

4.3 KNN Model

The KNN had very high accuracy, especially when tested on the training data. There were multiple
models which perfectly classified the training data, but this overfitting meant that the testing accuracy
was lower than the other models. This being said, the KNN model still performed well on these sets of
testing data. Unsurprisingly, the average number of neighbours for the male model was much higher
than that of the female model. This is clearly due to the number of datapoints in each set. It is
interesting that the 6 month property number of neighbours is considerably lower than the others.
This could potentially be because the trends between features is so strong and thus having a high
number of neighbours is unnecessary. During the initial plotting of the data, it was noticed that
the prior stealing convictions and property recidivism were by far the most correlated features in the
dataset. On the other hand, because of this high correlation, the small number of neighbours could
have been because the other features introduced unnecessary outliers and thus it was important to
only use the closest datapoints. Euclidean distance was rarely used, but was used solely within the

20

female models. Generally all of the models use the Minkowski distance metric, but there was no clear
trends between models or even between the p value and the weight. All the female models except the
most general used the uniform weight, which supports the hypothesis that the general models must
incorporate as many features as possible, including proximity between datapoints, to make accurate
classifications. The male models were much more sporadic, and, in fact, used distance more than
uniform weight. This could potentially be because the data had less clear boundaries between any
clusters that appeared and thus it is important to only choose neighbours that are closest. This is
also most likely the case because the number of neighbours in the male models were higher and thus
introduced more of the datapoints on the margin.

4.4 Ridge Regression

Unsurprisingly the ridge regression algorithm did not perform particularly well in the general cases, but
did do quite a good job across the board. Apart from the general case, on the 2 year misdemeanour,
felony and violent models, it performed the worst at around 75%. On the other models it was roughly
around 90%. Since the model used was a regressor being used as a classifier, this lack of success was
expected, however, overall the results aren’t considerably lower than the other models. As discussed
previously, the alpha value was a lot higher than initially predicted and sat around 10000 on average.
This would do a good job of preventing overfitting, especially important on such a small dataset. The
best solver chosen for each model was very different between models. This could be because some
datasets are harder to predict and thus must be robust to outliers, using Cholesky, or potentially are
trying to mimic more of the classification style of the SVM using least squares.

4.5 Comparisons

When comparing the accuracy of the SVM and Adaboost SVM models, the Adaboost models almost
all performed slightly better than the pure SVM. This was expected and acts as a verification that
there were no bugs in the method. There were certainly some outliers, but this can easily be attributed
to the fact that their optimal SVM model had rbf kernels and this was not tested with the Adaboost
model. A surprising observation that was made when comparing the SVM and Adaboost SVM models
was that the C values of each model were very different. Clearly, adding many of the optimal estimator
does not have as effective of a fit as adding many suboptimal estimators. This could be explained by
the fact that adding suboptimal estimators gives more breadth than adding a lot of the same slightly
stronger estimator. One caveat is that the Adaboost model was only implemented with a linear kernel
and thus some of the rbf estimators which were optimal by themselves were not considered. Overall, the
Adaboost SVM was superior to the SVM, but was highly computationally inefficient. The Adaboost
algorithm took approximately 27 hours to run compared to 30 minutes for the SVM algorithm. The
Adaboost algorithm only had improvements on the order of 1%. In future, it would be helpful to
implement the Adaboost algorithm with the rbf kernel as well.

Overall the best models are summarised below, Table 13, 14. The SVM model did very well for
the male data. It was interesting how many of the models performed exactly the same on the test set.
This could potentially be because the margins for those datapoints were much more clear than the
others and thus any decent algorithm would have success classifying that number of datapoints.

General Drug Property misdemeanour Felony Violent
Female SVM KNN Any SVM, ADA or KNN Any Any
Male ADA Any SVM SVM SVM SVM

Table 13: Best Algorithms - 2 Year

General Drug Property misdemeanour Felony Violent
Female Any Any Any Any Any Any
Male SVM! SVM SVM SVM KNN Any

Table 14: Best Algorithms - 6 Month

Please note for the 6 month Male General SVM improves on the others by nearly 20%!

21

Compared to the paper this paper was based on, the models performed less well. This being said,
without the same amount of time spent precisely tuning the outcomes, these algorithms did very well on
the test set, frequently producing accuracies over 95%. Since these algorithms are easily interpretable,
easy to implement and are frequently linear models which do not mask the effect of certain variables,
more work should be put into these methods to determine whether they are a viable solution to the
Arnold PSA or the decision tree algorithms.

5 Errors and Mistakes

One mistake that was caught late in the process was that rather than updating the model that was
to be used to determine the accuracy, I accidentally wrote ”==” rather than ”=”. This meant that
my analysis on the fitting of the model was incorrect. I discovered the problem when creating the
Hyperparameter table when I was very surprised that the hyperparameters for both the female and
male models were identical. The hardest part of the project was comparing all of the outcomes from
all of the models.

6 Citations

References

[1] An end to mass incarceration: Crown Family School of Social Work, policy, and Practice (1970)
An End to Mass Incarceration — Crown Family School of Social Work, Policy, and Practice. Avail-
able at: https://crownschool.uchicago.edu/ssa magazine/end-mass-incarceration.html (Accessed:
05 December 2023)

[2] Smith, J. and Tom (2020) How long does it take to process a criminal case in North Carolina?,
North Carolina Criminal Law. Available at: https://nccriminallaw.sog.unc.edu/how-long-does-it-
take-to-process-a-criminal-case-in-north-carolina/ (Accessed: 05 December 2023).

[3] Wang, C., Han, B., Patel, B., Mohideen, F., Rudin, C. (2022). In Pursuit of Interpretable, Fair
and Accurate Machine Learning for Criminal Recidivism Prediction. Journal of Quantitative Crim-
inology, 38(3), 687-714.

[4] Pedregosa, F. et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12(Oct), pp. 2825-2830.

7 Appendix

22

Figure 20: Train ROCs

Figure 21: Train ROCs

23

Figure 22: Train ROCs

Figure 23: Train ROCs

24

Figure 24: Train ROCs

Figure 25: Train ROCs

25

Figure 26: Train ROCs

Figure 27: Train ROCs

26

8 Code

#!/usr /bin /env python
coding : utf−8

In [9 2] :

import numpy as np
import pandas as pd
import seaborn as sns

import matp lo t l i b . pyplot as p l t
import matp lo t l i b

from sk l ea rn import svm
from sk l ea rn import metr i c s
from sk l ea rn . mode l s e l e c t i on import GridSearchCV
import random

from j o b l i b import Pa r a l l e l , de layed
import j o b l i b

In [1 0 9] :

data = pd . r ead c sv (”/ Users / a lannamanfred in i /Documents/∗ ML/Fina l Pro j e c t /broward data . csv ”)

#import data , s h u f f l e i t to ensure the re are no hidden b i a s e s which could appear during s p l i t t i n g data or e l s ewhere
fem dat = data [data [’ sex ’] == 0] . sample (f r a c =1). r e s e t i n d e x (drop=True)
male dat = data [data [’ sex ’] == 1] . sample (f r a c =1). r e s e t i n d e x (drop=True)

In [3 8 8] :

p r i n t (fem dat . shape)
p r i n t (male dat . shape)

In [3 5] :

#cut out columns which may int roduce r a c i a l b ias , temporal b i a s or which do not prov ide add i t i ona l in fo rmat ion
#f o r doing the pa i rw i s e comparison plot , cut out binary c l a s s i f i c a t i o n terms
ma l e pa i rw i s e da t = male dat . drop ([’ per son id ’ , ’ s c r e en ing date ’ , ’ sex ’ , ’ race ’] , a x i s = 1)
ma le pa i rw i s e dat nonb in = mal e pa i rw i s e da t . l o c [: , ma l e pa i rw i s e da t . nunique () > 2]

f em pa i r da t = fem dat . drop ([’ per son id ’ , ’ s c r e en ing date ’ , ’ sex ’ , ’ race ’] , a x i s = 1)
f em pa i r dat nonb in = fem pa i r da t . l o c [: , f em pa i r da t . nunique () > 2]

In [2 5 8] :

27

pr in t (ma l e t ra in . columns)

In [3 6] :

double check ing f o r dodgy data − one man has f i r s t charge at 0
p r in t (ma l e pa i rw i s e da t [ma l e pa i rw i s e da t [’ a g e a t f i r s t c h a r g e ’] <10])

In [3 7] :

#sns . p a i r p l o t (f em pa i r da t [i j i])

In [3 8] :

”””
0 .2 % of the male data i s 340 datapo int s
0 .2 % o f the female data i s 50 dp

because the data was s hu f f l e d during import ,
the re i s no worry about in t roduc ing b i a s e s by choos ing the end o f the datase t as our t e s t and beg inning as t r a i n
”””

ma l e t e s t = ma l e pa i rw i s e da t . i l o c [: 3 4 0]
ma l e t ra in = ma l e pa i rw i s e da t . i l o c [3 4 0 :] . r e s e t i n d e x (drop=True)

f em te s t = fem pa i r da t . i l o c [: 5 0]
f em t ra in = fem pa i r da t . i l o c [5 0 :] . r e s e t i n d e x (drop=True)

In [4 0] :

func t i on to re turn a SVC model based o f f a s i n g l e input (not Gridsearch)
de f cropping model (a , b , r ec id , kern) :

male tra in X = male t ra in . i l o c [: , a : b]
ma l e t r a i n y = mal e t ra in . i l o c [: , r e c i d]

model = svm .SVC(ke rne l = kern)
model . f i t (male tra in X , ma l e t r a in y)

pred = model . p r ed i c t (male tra in X)
df = pd . DataFrame ({ ’ pred ’ : pred , ’ r ea l ’ : ma l e t r a i n y })
re turn model , d f

In [4 1] :

#X val / hyperparam tuning
hyperparams = { ’ kerne l ’ : (’ l i n e a r ’ , ’ rbf ’) , ’C ’ : [0 . 1 , 1 , 10 , 100] , ’gamma ’ : [0 . 1 , 1 , 10 , 100]}

28

RVM??

In [4 2] :

#c r e a t i n g a func t i on to make a model f o r the male t r a i n i n g data
de f gr id mode l (a , b , r ec id , param) :

male tra in X = male t ra in . i l o c [: , a : b]
ma l e t r a i n y = mal e t ra in . i l o c [: , r e c i d]
model = svm .SVC()
c l a s s i f = GridSearchCV (model , param)
c l a s s i f . f i t (male tra in X , ma l e t r a in y)

re turn c l a s s i f

In [3 5] :

#make models f o r a l l the p o s s i b l e male outcomes
models = [param mod]

f o r mod in range (3 8 , 4 9) :
models . append (gr id mode l (0 ,37 ,mod , hyperparams))
p r i n t (mod)

In [5 2] :

add a column to see whether the model can p r ed i c t any form o f r e c i d i v i sm
rec id outcome = male t ra in . i l o c [: , 3 7 :] . sum(ax i s = 1)
rec id outcome [rec id outcome >0] = 1
ma l e t ra in [’ any rec id ’] = rec id outcome

rec id outcome = ma l e t e s t . i l o c [: , 3 7 :] . sum(ax i s = 1)
rec id outcome [rec id outcome >0] = 1
ma l e t e s t [’ any rec id ’] = rec id outcome
pr in t (ma l e t e s t)

In [4 3] :

c r ea t e model f o r any r e c i d i v i sm
c l a s s i f = gr id mode l (0 ,37 ,49 , hyperparams)

In [6 5] :

save models
f o r mod in range (3 7 , 5 0) :

j o b l i b . dump(models [mod−37] , f ’{mod} . pkl ’)

29

j o b l i b . dump(c l a s s i f , f ’ any . pkl ’)

In [4 5] :

c r ea t e func t i on f o r c r e a t i n g SVM models f o r female data
de f fem gr id model (a , b , r ec id , param) :

fem tra in X = fem tra in . i l o c [: , a : b]
f em t ra in y = fem tra in . i l o c [: , r e c i d]
model = svm .SVC()
c l a s s i f = GridSearchCV (model , param)
c l a s s i f . f i t (fem train X , f em t ra in y)

re turn c l a s s i f

In [5 3] :

#add a column f o r a l l r e c i d i v i sm
rec id outcome fem = fem tra in . i l o c [: , 3 7 :] . sum(ax i s = 1)
rec id outcome fem [rec id outcome fem >0] = 1
f em tra in [’ any rec id ’] = rec id outcome fem

rec id outcome fem = fem te s t . i l o c [: , 3 7 :] . sum(ax i s = 1)
rec id outcome fem [rec id outcome fem >0] = 1
f em te s t [’ any rec id ’] = rec id outcome fem

In [7 2] :

save
f o r mod in range (3 7 , 5 0) :

j o b l i b . dump(fem gr id mode l (0 ,37 ,mod , hyperparams) , f ’ fem {mod} . pkl ’)

In [5 4] :

c r ea t e data f f rames that s t o r e the p r ed i c t i on and r e a l r e s u l t s f o r each model next to each other
s t o r e the bes t parameters f o r each model
t r a i n r e s u l t s d f f em = pd . DataFrame ()
t r a i n r e s u l t s d f ma l e = pd . DataFrame ()

t e s t r e s u l t s d f f em = pd . DataFrame ()
t e s t r e s u l t s d f m a l e = pd . DataFrame ()

params df male = []
params df fem = []
f o r i in range (3 7 , 4 9) :

model m = j o b l i b . load (f ’{ i } . pkl ’)
model f = j o b l i b . load (f ’ fem { i } . pkl ’)

30

t r a i n r e s u l t s d f f em [f ’ r e a l { i } ’] = f em tra in . i l o c [: , i]
t r a i n r e s u l t s d f f em [f ’{ i } ’] = model f . p r ed i c t (f em tra in . i l o c [: , 0 : 3 7])

t r a i n r e s u l t s d f ma l e [f ’ r e a l { i } ’] = ma l e t ra in . i l o c [: , i]
t r a i n r e s u l t s d f ma l e [f ’{ i } ’] = model m . p r ed i c t (ma l e t ra in . i l o c [: , 0 : 3 7])

t e s t r e s u l t s d f f em [f ’ r e a l { i } ’] = f em te s t . i l o c [: , i]
t e s t r e s u l t s d f f em [f ’{ i } ’] = model f . p r ed i c t (f em te s t . i l o c [: , 0 : 3 7])

t e s t r e s u l t s d f m a l e [f ’ r e a l { i } ’] = ma l e t e s t . i l o c [: , i]
t e s t r e s u l t s d f m a l e [f ’{ i } ’] = model m . p r ed i c t (ma l e t e s t . i l o c [: , 0 : 3 7])

params df male . append (model m . best params)
params df fem . append (model f . best params)

model m = j o b l i b . load (f ’ any . pkl ’)
model f = j o b l i b . load (f ’ fem 49 . pkl ’)

t r a i n r e s u l t s d f f em [f ’ r e a l 49 ’] = f em tra in . i l o c [: , 4 9]
t r a i n r e s u l t s d f f em [f ’ 4 9 ’] = model f . p r ed i c t (f em tra in . i l o c [: , 0 : 3 7])

t r a i n r e s u l t s d f ma l e [f ’ r e a l 49 ’] = ma l e t ra in . i l o c [: , 4 9]
t r a i n r e s u l t s d f ma l e [f ’ 4 9 ’] = model m . p r ed i c t (ma l e t ra in . i l o c [: , 0 : 3 7])

t e s t r e s u l t s d f f em [f ’ r e a l 49 ’] = f em te s t . i l o c [: , 4 9]
t e s t r e s u l t s d f f em [f ’ 4 9 ’] = model f . p r ed i c t (f em te s t . i l o c [: , 0 : 3 7])

t e s t r e s u l t s d f m a l e [f ’ r e a l 49 ’] = ma l e t e s t . i l o c [: , 4 9]
t e s t r e s u l t s d f m a l e [f ’ 4 9 ’] = model m . p r ed i c t (ma l e t e s t . i l o c [: , 0 : 3 7])

params df male . append (model m . best params)
params df fem . append (model f . best params)

In [3 6 2] :

s t o r e the a c cu r a c i e s and p lo t the ROC curves f o r each model
names = mal e t ra in . i l o c [: , 3 7 :] . columns
models = [t r a i n r e s u l t s d f ma l e , t e s t r e s u l t s d f ma l e , t r a i n r e s u l t s d f f em , t e s t r e s u l t s d f f em]
mod name = [’ Male Train ing ROC’ , ’Male Test ROC’ , ’ Female Train ROC’ , ’ Female Test ROC’]

accuracy = []

cmap = matp lo t l i b . cm . get cmap (’ Spect ra l ’)

mod count = 0
f o r mods in models :

f i g , ax = p l t . subp lo t s ()
counter = 0
f o r i in range (1 3) :

f p r = [0]
tpr = [0]
r e l e v d f = mods . i l o c [: , counter : counter+2]

31

accuracy . append (metr i c s . a c cu racy s co r e (r e l e v d f . i l o c [: , 0] , r e l e v d f . i l o c [: , 1]))

neg = r e l e v d f [r e l e v d f . i l o c [: , 0] == 0]
pos = r e l e v d f [r e l e v d f . i l o c [: , 0] == 1]

fp r . append (neg . sum () [1] / neg . shape [0])
tpr . append (pos . sum () [1] / pos . shape [0])

f p r . append (1)
tpr . append (1)

ax . p l o t (fpr , tpr , l a b e l = names [i] , c o l o r=cmap(i / 12))
counter+=2

ax . legend (l o c=’ cente r l e f t ’ , bbox to anchor =(1 , 0 . 5))
ax . s e t x l a b e l (” Fa l se Po s i t i v e Rate ”)
ax . s e t y l a b e l (”True Po s i t i v e Rate ”)
ax . s e t t i t l e (mod name [mod count])
f i g . t i g h t l a y ou t ()
f i g . s a v e f i g (f ’{mod name [mod count] } . png ’ , bbox inches = ’ t ight ’)

mod count += 1

pr in t (f p r)
p r i n t (tpr)

In [3 5 8] :

s p l i t the a c cu r a c i e s so they are more l e g i b l e
ma l e t r a c c = accuracy [: 1 3]
ma l e t e acc = accuracy [1 3 : 2 6]
f em t r a c c = accuracy [2 6 : 3 9]
f em te acc = accuracy [3 9 :]

In [1 0 4] :

pr in t a c cu r a c i e s
p r i n t (ma l e t r a c c)
p r i n t (’∗∗∗∗∗∗∗∗∗∗∗∗ ’)
p r i n t (ma l e t e acc)
p r i n t (’∗∗∗∗∗∗∗∗∗∗∗∗ ’)
p r i n t (f em t r a c c)
p r i n t (’∗∗∗∗∗∗∗∗∗∗∗∗ ’)
p r i n t (f em te acc)
p r i n t (’∗∗∗∗∗∗∗∗∗∗∗∗ ’)

In [1 0 5] :

32

pr in t out the Gridsearch parameters
p r i n t (”male params ”)
p r i n t (params df male)

p r i n t (” fem params ”)
p r i n t (params df fem)

NEXT MODEL − ADABOOST USING SVM

In [1 7 0] :

pr in t data f o r next model
p r i n t (ma l e t ra in . shape)
p r i n t (ma l e t e s t . shape)
p r i n t (f em tra in . shape)
p r i n t (f em te s t . shape)

DataSets = [fem tra in , f em tes t , male t ra in , ma l e t e s t]

In [1 1 0] :

from sk l ea rn . ensemble import AdaBoos tC la s s i f i e r

In [2 2 2] :

c r ea t e func t i on which r e tu rn s the adaboost model f o r SVC with g r i d s ea r ch
de f adaboost mod (data x , data y , kerne l , C, gamma) :

Create the base e s t imator (SVM)
i f k e rne l == ’ l i n e a r ’ :

ba s e e s t imato r = svm .SVC(ke rne l=kerne l , C = C, p r obab i l i t y=True)
i f k e rne l == ’ rbf ’ :

ba s e e s t imato r = svm .SVC(ke rne l=kerne l , gamma = gamma, p r obab i l i t y=True)

Create the AdaBoost model
model = AdaBoos tC la s s i f i e r ()
GS param = { ’ e s t imator ’ : [ba s e e s t imato r] , ’ random state ’ : [0] , ’ n e s t imator s ’ : [1 0 , 5 0 , 1 0 0] , ’ l e a r n i n g r a t e ’ : [0 . 0 0 1 , 0 . 01 , 0 . 1 , 1 . 0] }
c l f = GridSearchCV (model , GS param)

Train the model
c l f . f i t (data x , data y)

re turn c l f

In [2 2 5] :

33

t r a i n s e t s = [fem tra in , ma l e t ra in]
C = [0 . 1 , 1 , 1 0]

Cs = []
modl = []
c oun t e r t r a i n = 0

use g r i d s e a r ch to determine the best Adaboost parameters . . . wi th in the loops c r e a t e three models and f i nd which has
#the best C. This i s e f f e c t i v e l y a second loop o f g r i d s e a r ch f o r the base e s t imator

f o r t r a i n in t r a i n s e t s :
i f c oun t e r t r a i n == 0 : name = ”fem”
e l s e : name = ”male”
f o r r e c i d in range (3 7 , 5 0) :

p r i n t (’ Next model : ’ , r e c i d)
sma l l c = adaboost mod (t r a i n . i l o c [: , : 3 7] , t r a i n . i l o c [: , r e c i d] , ’ l i n e a r ’ , 0 . 1 , ’ x ’)
p r i n t (’ smal l f i n i s h ed ’)
med c = adaboost mod (t r a i n . i l o c [: , : 3 7] , t r a i n . i l o c [: , r e c i d] , ’ l i n e a r ’ , 1 , ’ x ’)
p r i n t (’med f i n i s h ed ’)
b i g c = adaboost mod (t r a i n . i l o c [: , : 3 7] , t r a i n . i l o c [: , r e c i d] , ’ l i n e a r ’ , 10 , ’ x ’)
p r i n t (” l a r g e f i n i s h e d ”)

models = [smal l c , med c , b i g c]

s c o r e s = np . array ([sma l l c . b e s t s c o r e , med c . b e s t s c o r e , b i g c . b e s t s c o r e])

#c r ea t e a l i s t o f the bes t C f o r each model
Cs . append (C[s c o r e s . argmax ()])
modl . append (models [s c o r e s . argmax ()])

#save the model
j o b l i b . dump(models [s c o r e s . argmax ()] , f ’ Ada {name} { r e c i d } . pkl ’)

c oun t e r t r a i n += 1

In [2 4 0] :

load models from saved
modl = []
c oun t e r t r a i n = 0
f o r t r a i n in t r a i n s e t s :

i f c oun t e r t r a i n == 0 : name = ”fem”
e l s e : name = ”male”
f o r r e c i d in range (3 7 , 5 0) :

modl . append (j o b l i b . load (f ’ Ada {name} { r e c i d } . pkl ’))
c oun t e r t r a i n += 1

In [2 4 2] :

#s p l i t the Cs and model l i s t s i n to s epara te genders f o r easy i n t e r p r e t a t i o n
fem Cs = Cs [: i n t (l en (Cs) / 2)]
male Cs = Cs [i n t (l en (Cs) / 2) :]

fem models = modl [: i n t (l en (modl) / 2)]

34

male models = modl [i n t (l en (modl) / 2) :]

In [2 4 3] :

Create a gene ra l f unc t i on to make an ROC when given the pred i c t ed va lue s
names = mal e t ra in . i l o c [: , 3 7 :] . columns
cmap = matp lo t l i b . colormaps [’ Spect ra l ’]
de f ROC(f igu , axi , model , data , r ea l , i) :

pred = model . p r ed i c t p roba (data) [: , 1]

fpr , tpr , t h r e sho ld s = metr i c s . r o c cu rve (r ea l , pred)

ax i . p l o t (fpr , tpr , l a b e l = names [i] , c o l o r=cmap(i / 12))

In [3 7 3] :

pr in t the best hyperparameters f o r comparison
f o r items in male models :

p r i n t (i tems . best params)

In [3 6 1] :

c r ea t e and ROC curve f o r each model
da t a s e t i dx = 0
one p l o t f o r each gender
f o r genders in range (2) :

i f genders == 0 : modl = fem models ; gen = ’Female ’
e l s e : modl = male models ; gen = ’Male ’
p r i n t (f ”Genders {gen }”)

#one p l o t f o r t e s t and t r a i n
f o r t e t r in range (2) :

i f t e t r == 0 : c a l c = ’ Train ’
e l s e : c a l c = ’ Test ’

p r i n t (f ”Test ? { c a l c }”)

f i g , ax = p l t . subp lo t s ()

re lv DS = DataSets [da t a s e t i dx]
counter = 0

f o r mod in modl : # f o r the models f o r each outcome make an ROC curve
p r in t (f ”Model {mod . best params }”)
f e a t = relv DS . i l o c [: , : 3 7]
expected = relv DS . i l o c [: , counter +37]
ROC(f i g , ax , mod , f ea t , expected , counter)

counter+=1

35

ax . s e t x l a b e l (” Fa l se Po s i t i v e Rate ”)
ax . s e t y l a b e l (”True Po s i t i v e Rate ”)
ax . s e t t i t l e (f ”{gen} Adaboost { c a l c } ROC Curve ”)
f i g . t i g h t l a y ou t ()
ax . l egend (l o c=’ cente r l e f t ’ , bbox to anchor =(1 , 0 . 5))
f i g . s a v e f i g (f ”{gen} Adaboost { c a l c } ROC Curve . png ” , bbox inches = ’ t ight ’)
da t a s e t i dx += 1

In [3 3 5] :

#Determine the accuracy s co r e f o r each o f the t e s t and t r a i n models
ada acc = []
da t a s e t i dx = 0
f o r genders in range (2) :

i f genders == 0 : modl = fem models ; gen = ’Female ’
e l s e : modl = male models ; gen = ’Male ’
p r i n t (f ”Genders {gen }”)

f o r t e t r in range (2) :
i f t e t r == 0 : c a l c = ’ Train ’
e l s e : c a l c = ’ Test ’

p r i n t (f ”Test ? { c a l c }”)

re lv DS = DataSets [da t a s e t i dx]
counter = 0

f o r mod in modl :
p r i n t (f ”Model {mod . best params }”)
f e a t = relv DS . i l o c [: , : 3 7]
expected = relv DS . i l o c [: , counter +37]
ada acc . append (metr i c s . a c cu racy s co r e (expected , mod . p r ed i c t (f e a t)))

counter+=1

da ta s e t i dx += 1

In [3 3 6] :

p r i n t (ada acc [: 1 3])
p r i n t (ada acc [1 3 : 2 6])
p r i n t (ada acc [2 6 : 3 9])
p r i n t (ada acc [3 9 :])

NEXT MODEL − KNN

In [] :

from sk l ea rn . ne ighbors import KNe ighbor sC la s s i f i e r

36

In [2 9 7] :

S imi l a r to prev ious ly , c r e a t e a func t i on f o r g r i d s ea r ch on KNN model
de f KNN mod(data x , data y) :

GS param = { ’ n ne ighbors ’ : [1 , 2 , 5 , 10 , 25 , 50] , ’ weights ’ : [’ uniform ’ , ’ d i s tance ’] , ’p ’ : [0 . 5 , 1 , 2 , 3 , 5 , 10 , 100]}

Create the base e s t imator
ne ighbours = KNe ighbo r sC la s s i f i e r ()
c l f = GridSearchCV (neighbours , GS param)

Train the model
c l f . f i t (data x , data y)

re turn c l f

In [2 1 7] :

ignore warnings
import warnings
warnings . f i l t e rw a r n i n g s (” i gnore ” , message=”.∗Minkowski met r i c s are not d i s t anc e metr i c s .∗”)

In [2 9 8] :

c r ea t e a model f o r each r e c i d i v i sm outcome
t r a i n s e t s = [fem tra in , ma l e t ra in]
modl KNN = []
c oun t e r t r a i n = 0
f o r t r a i n in t r a i n s e t s :

i f c oun t e r t r a i n == 0 : name = ”fem”
e l s e : name = ”male”

p r in t (”Gender : ” , name)
f o r r e c i d in range (3 7 , 5 0) :

p r i n t (”Output ” , r e c i d)
mod = KNN mod(t r a i n . i l o c [: , : 3 7] , t r a i n . i l o c [: , r e c i d])
modl KNN . append (mod)

j o b l i b . dump(mod, f ’KNN {name} { r e c i d } . pkl ’)
c oun t e r t r a i n += 1

In [2 9 9] :

#s p l i t models f o r ease o f par s ing
KNN fem models = modl KNN [: i n t (l en (modl KNN)/ 2)]
KNN male models = modl KNN [i n t (l en (modl KNN) / 2) :]

In [3 6 3] :

37

crea t e an ROC curve f o r each model
da t a s e t i dx = 0
KNN acc = []
f o r genders in range (2) :

i f genders == 0 : modl = KNN fem models ; gen = ’Female ’
e l s e : modl = KNN male models ; gen = ’Male ’
p r i n t (f ”Genders {gen }”)

f o r t e t r in range (2) :
i f t e t r == 0 : c a l c = ’ Train ’
e l s e : c a l c = ’ Test ’

p r i n t (f ”Test ? { c a l c }”)

f i g , ax = p l t . subp lo t s ()

re lv DS = DataSets [da t a s e t i dx]

counter = 0
f o r mod in modl : # f o r the models f o r each outcome make an ROC curve

p r in t (f ”Model {mod . best params }”)
f e a t = relv DS . i l o c [: , : 3 7]
expected = relv DS . i l o c [: , counter +37]
ROC(f i g , ax , mod , f ea t , expected , counter)

counter+=1

ax . s e t x l a b e l (” Fa l se Po s i t i v e Rate ”)
ax . s e t y l a b e l (”True Po s i t i v e Rate ”)
ax . s e t t i t l e (f ”{gen} KNN { c a l c } ROC Curve ”)
f i g . t i g h t l a y ou t ()
ax . l egend (l o c=’ cente r l e f t ’ , bbox to anchor =(1 , 0 . 5))
f i g . s a v e f i g (f ”{gen} KNN { c a l c } ROC Curve . png ” , bbox inches = ’ t ight ’)
da t a s e t i dx += 1

In [3 3 9] :

#determine the accuracy o f each model on both t e s t and t r a i n data
KNN acc = []
da t a s e t i dx = 0
f o r genders in range (2) :

i f genders == 0 : modl = KNN fem models ; gen = ’Female ’
e l s e : modl = KNN male models ; gen = ’Male ’
p r i n t (f ”Genders {gen }”)

f o r t e t r in range (2) :
i f t e t r == 0 : c a l c = ’ Train ’
e l s e : c a l c = ’ Test ’

p r i n t (f ”Test ? { c a l c }”)

38

re lv DS = DataSets [da t a s e t i dx]
counter = 0

f o r mod in modl :
#pr in t (f ”Model {mod}”)
f e a t = relv DS . i l o c [: , : 3 7]
expected = relv DS . i l o c [: , counter +37]
KNN acc . append (metr i c s . a c cu racy s co r e (expected , mod . p r ed i c t (f e a t)))

counter+=1

da ta s e t i dx += 1

In [3 4 0] :

pr in t a c cu r a c i e s
p r i n t (KNN acc [: 1 3])
p r i n t (KNN acc [1 3 : 2 6])
p r i n t (KNN acc [2 6 : 3 9])
p r i n t (KNN acc [3 9 :])

In [3 6 4] :

p lo t the accuracy o f each model compared to the changing hyperparameters
pot n ne ighbours =[1 , 2 , 5 , 10 , 25 , 50]
pot p =[0 . 5 , 1 , 2 , 3 , 5 , 10 , 100]
p l o c = np . array ([1 4 , 1 6 , 1 8 , 2 0 , 2 2 , 2 4 , 2 6])

da t a s e t i dx = 0
f o r genders in range (2) :

i f genders == 0 : modl = KNN fem models ; gen = ’Female ’
e l s e : modl = KNN male models ; gen = ’Male ’
p r i n t (f ”Genders {gen }”)

f i g1 , ax1 = p l t . subp lo t s ()
f i g2 , ax2 = p l t . subp lo t s ()

i = 0
f o r mod in modl : # f o r the models f o r each outcome make an ROC curve

data = pd . DataFrame (mod . c v r e s u l t s)
nn dat = data . l o c [(data . index % 14) == 4]
i f gen == ’Female ’ : p dat = data . l o c [p l o c]
e l s e : p dat = data . l o c [p l o c+ 14∗3]

ax1 . semi logx (pot n ne ighbours , nn dat [’ mean te s t s core ’] , l a b e l = names [i])
ax2 . semi logx (pot p , p dat [’ mean te s t s core ’] , l a b e l = names [i])
i += 1

ax1 . s e t x l a b e l (” l og Number Neighbours ”)

39

ax1 . s e t y l a b e l (”Mean Test Score ”)
ax1 . s e t t i t l e (f ”{gen} KNN Number o f Neighbours Hyperparameter Performance ”)
f i g 1 . t i g h t l a y ou t ()
ax1 . l egend (l o c=’ cente r l e f t ’ , bbox to anchor =(1 , 0 . 5))
f i g 1 . s a v e f i g (f ”{gen} KNN Hyperparameter Performance − NN. png” , bbox inches = ’ t ight ’)

ax2 . s e t x l a b e l (” l og P”)
ax2 . s e t y l a b e l (”Mean Test Score ”)
ax2 . s e t t i t l e (f ”{gen} KNN P Hyperparameter Performance ”)
f i g 2 . t i g h t l a y ou t ()
ax2 . l egend (l o c=’ cente r l e f t ’ , bbox to anchor =(1 , 0 . 5))
f i g 2 . s a v e f i g (f ”{gen} KNN Hyperparameter Performance − P. png” , bbox inches = ’ t ight ’)
da t a s e t i dx += 1

NEXT MODEL − RIDGE

In [2 7 3] :

from sk l ea rn . l i n ea r mode l import Ridge

In [3 8 1] :

c r ea t e a func t i on to c r e a t e a g r i d s ea r ch f o r r i dg e r e g r e s s i o n
de f Ridge mod (data x , data y) :

l i n e a r r e g r e s s i o n alpha a l s o chosen f o r comparison
GS param = { ’ alpha ’ : [0 , 1 , 100 , 1000 , 10000 , 1000000] , ’ s o l v e r ’ : [’ svd ’ , ’ cholesky ’ , ’ l s q r ’] }

Create the base e s t imator
RR = Ridge ()
c l f = GridSearchCV (RR, GS param)

Train the model
c l f . f i t (data x , data y)

re turn c l f

In [3 8 2] :

c r ea t e and save best r i dg e r e g r e s s i o n models
modl RR = []
c oun t e r t r a i n = 0
f o r t r a i n in t r a i n s e t s :

i f c oun t e r t r a i n == 0 : name = ”fem”
e l s e : name = ”male”

p r in t (”Gender : ” , name)
f o r r e c i d in range (3 7 , 5 0) :

40

pr in t (”Output ” , r e c i d)
curr mod = Ridge mod (t r a i n . i l o c [: , : 3 7] , t r a i n . i l o c [: , r e c i d])
modl RR . append (curr mod)

j o b l i b . dump(curr mod , f ’RR {name} { r e c i d } . pkl ’)
c oun t e r t r a i n += 1

In [3 8 3] :

s p l i t f o r easy par s ing
RR fem models = modl RR [: i n t (l en (modl RR) / 2)]
RR male models = modl RR [i n t (l en (modl RR) / 2) :]

In [3 8 4] :

#func t i on f o r ROCs f o r the models
names = mal e t ra in . i l o c [: , 3 7 :] . columns
cmap = matp lo t l i b . colormaps [’ Spect ra l ’]
de f ROC RR(f igu , axi , model , data , r ea l , i) :

pred = model . p r ed i c t (data)

fpr , tpr , t h r e sho ld s = metr i c s . r o c cu rve (r ea l , pred)

ax i . p l o t (fpr , tpr , l a b e l = names [i] , c o l o r=cmap(i / 12))

In [3 8 5] :

c r ea t e the ROC f o r both genders and t e s t / t r a i n
da t a s e t i dx = 0
RR acc = []
f o r genders in range (2) :

i f genders == 0 : modl = RR fem models ; gen = ’Female ’
e l s e : modl = RR male models ; gen = ’Male ’
p r i n t (f ”Genders {gen }”)

f o r t e t r in range (2) :
i f t e t r == 0 : c a l c = ’ Train ’
e l s e : c a l c = ’ Test ’

p r i n t (f ”Test ? { c a l c }”)

f i g , ax = p l t . subp lo t s ()

re lv DS = DataSets [da t a s e t i dx]

counter = 0
f o r mod in modl : # f o r the models f o r each outcome make an ROC curve

p r in t (f ”Model {mod . best params }”)
f e a t = relv DS . i l o c [: , : 3 7]

41

expected = relv DS . i l o c [: , counter +37]
ROC RR(f i g , ax , mod , f ea t , expected , counter)

counter+=1

ax . s e t x l a b e l (” Fa l se Po s i t i v e Rate ”)
ax . s e t y l a b e l (”True Po s i t i v e Rate ”)
ax . s e t t i t l e (f ”{gen} RR { c a l c } ROC Curve ”)
f i g . t i g h t l a y ou t ()
ax . l egend (l o c=’ cente r l e f t ’ , bbox to anchor =(1 , 0 . 5))
f i g . s a v e f i g (f ”{gen} RR { c a l c } ROC Curve . png ” , bbox inches = ’ t ight ’)
da t a s e t i dx += 1

In [3 8 6] :

determine the accuracy o f each model
da t a s e t i dx = 0
RR acc = []
f o r genders in range (2) :

i f genders == 0 : modl = RR fem models ; gen = ’Female ’
e l s e : modl = RR male models ; gen = ’Male ’
p r i n t (f ”Genders {gen }”)

f o r t e t r in range (2) :
i f t e t r == 0 : c a l c = ’ Train ’
e l s e : c a l c = ’ Test ’

p r i n t (f ”Test ? { c a l c }”)

re lv DS = DataSets [da t a s e t i dx]

counter = 0
f o r mod in modl :

p r i n t (f ”Model {mod . best params }”)
f e a t = relv DS . i l o c [: , : 3 7]
expected = relv DS . i l o c [: , counter +37]
pred = pd . DataFrame (mod . p r ed i c t (f e a t))
pred [pred [0] > 0 . 5] = 1
pred [pred [0] < 0 . 5] = 0

RR acc . append (metr i c s . a c cu racy s co r e (expected , pred))

counter += 1
da ta s e t i dx += 1

In [3 8 7] :

pr in t accuracy
p r in t (RR acc [: 1 3])
p r i n t (RR acc [1 3 : 2 6])

42

pr in t (RR acc [2 6 : 3 9])
p r i n t (RR acc [3 9 :])

In [4 4 6] :

#c r e a t i n g p l o t s f o r v r i a b l e importance f o r r i dg e r e g r e s s i o n
da t a s e t i dx = 0
rge = range (37)
RR acc = []

f o r genders in range (2) :
i f genders == 0 : modl = RR fem models ; gen = ’Female ’
e l s e : modl = RR male models ; gen = ’Male ’
p r i n t (f ”Genders {gen }”)
f i g , ax = p l t . subp lo t s (4 , 3)
counter = 0
f o r mod in modl :

i f counter == 12 : break
p r in t (f ”Model {mod . best params }”)
y = mod . b e s t e s t ima t o r . c o e f
#pr in t (y)
ax [i n t (counter /3) , counter %3]. p l o t (rge , y , c o l o r = ’b ’)
ax [i n t (counter /3) , counter %3]. s e t t i t l e (names [counter])

counter+=1

f i g . s u p t i t l e (f ”{gen} Ridge Regres s ion Var iab le Importance ”)
f i g . t i g h t l a y ou t ()
f i g . s a v e f i g (f ”{gen} Ridge Reg Var iab le Importance . png ” , bbox inches = ’ t ight ’)

In [4 5 4] :

#c r e a t i n g p l o t s o f the va r i ab l e import in the Adaboost − t h i s i s us ing the same parameters as the optimal adaboost SVM models
da t a s e t i dx = 0
rge = range (37)
RR acc = []

fem c = [0 . 1 , 1 , 0 . 1 , 0 . 1 , 1 0 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 1 , 0 . 1 , 0 . 1]
male c = [1 0 , 0 . 1 , 0 . 1 , 0 . 1 , 1 , 1 0 , 1 0 , 0 . 1 , 0 . 1 , 0 . 1 , 1 , 0 . 1]
f o r genders in range (2) :

i f genders == 0 : dat = fem tra in ; gen = ’Female ’ ; c = fem c
e l s e : dat = mal e t ra in ; gen = ’Male ’ ; c = male c
p r i n t (f ”Genders {gen }”)
f i g , ax = p l t . subp lo t s (4 , 3)
counter = 0
f o r i in range (1 2) :

#pr in t (f ”Model {mod . best params }”)
mod = svm .SVC(ke rne l = ’ l i n e a r ’ , C = c [i])
mod . f i t (dat . i l o c [: , : 3 7] , dat . i l o c [: , 37+ i])
y = mod . c o e f

43

pr in t (i)
ax [i n t (counter /3) , counter %3]. p l o t (rge , y [0] , c o l o r = ’b ’)
ax [i n t (counter /3) , counter %3]. s e t t i t l e (names [counter])

counter+=1

f i g . s u p t i t l e (f ”{gen} AdaBoost Models Var iab le Importance ”)
f i g . t i g h t l a y ou t ()
f i g . s a v e f i g (f ”{gen} Ada Var iab le Importance . png ” , bbox inches = ’ t ight ’)

In [] :

44

	Background
	Introduction
	Data Description
	Previous Work

	Methods
	Experiments
	Results
	Hyperparameter Selection
	Visualisation
	Variable Importance Analysis

	Insight
	SVM Model
	Adaboost Model
	KNN Model
	Ridge Regression
	Comparisons

	Errors and Mistakes
	Citations
	Appendix
	Code

