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1 Introduction

The concept of holonomy explores how smooth surfaces interact against each
other by “rolling” one surface over another through arbitrarily closed loops
around a base point. In our project, we focused on the discrete setup of this
problem, in particular, we referred to triangular surfaces where we put an in-
teraction between two surfaces by choosing two different faces of each one and
matching vertices between them. This choice of two touching faces and the
matching between their vertices define a position between the two surfaces. So
our general goal of understanding the interaction between two surfaces is to
figure out how the position changes after rolling the surfaces over each other,
what are all possible positions we can get after rolling in arbitrary loops.

To understand the big picture, we started by making observations for a sim-
ple, highly symmetric structure - the tetrahedron - and examining what possible
holonomy groups we can get from rolling it over different surfaces. Along with
that, we built up our understanding of loop structure on a given surface, conjec-
turing about what features that loops may have and how those features give us
computational tools to break down the holonomy group. Then, we introduced
the concepts of contractibility and combinatorial fundamental group, brought
from a perspective of algebraic topology. It helped us slightly reduce the com-
plexity of calculating the holonomy groups. We then managed to develop math-
ematical tools using those ideas and apply them to compute the holonomy of
triangular tori by looking at the generating elements induced by non-contractible
loops. This gave us a classification of tori’s holonomies that vary from trivial,
Z/2Z, V4, to full tetrahedral groups. In the end, to identify surfaces that have
the Z/3Z holonomy, we introduced an entirely different method by dealing with
the structure on the vertices of the surface. This method can identify exactly
trivial or Z/3Z holonomy for the orientable surface. Then, we used subdivided
surfaces to apply this method and showed an example of a surface with Z/3Z
holonomy.

While the smooth holonomy problem has already been studied thoroughly,
combinatorial holonomy is still a new approach that very few people has stud-
ied. By looking at this problem discretely, it opens many interesting problems to
think about, as well as many remarkable results. By understanding the combi-
natorial holonomy, we can draw a connection to the smooth holonomy problem.
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That connection is helpful for us to develop a computational tool for the holon-
omy of arbitrary smooth surfaces, by approximating it with a discrete version
that makes it plausible to implement and simulate using algorithms.

2 Background

This section provides a general synopsis of main terms and ideas used through-
out the research paper.

2.1 The Tetrahedral Group

We spend much of this paper working with the symmetries of the tetrahedron,
so we begin with a brief overview of the structure of the tetrahedron’s isometry
group.

There are 12 rotations of the tetrahedron: for each of the four faces of the
tetrahedron, there are three rotations holding that face fixed. There are an
additional 12 symmetries that combine a reflection and a rotation. The 8 pure
rotations about an axis passing through a vertex and the center of the opposite
face form one conjugacy class and all have order 3. The 3 pure rotations about
an axis passing through the midpoints of two non-adjacent edges form another
conjugacy group and all have order 2. The 6 pure reflections of the tetrahedron,
which each exchange two vertices and leave two vertices fixed, form an additional
conjugacy class whose elements have order 2. The remaining 6 non-identity
elements, all of which have order 4 and are the product of a pure rotation and
a reflection involving the vertex fixed by the rotation, form a conjugacy class
containing precisely the elements of order 4. Finally, the identity lies in its own
conjugacy class.

Thus, the tetrahedron’s isometry group can be seen as a group of 24 permu-
tations of the four vertices of the tetrahedron. But there are only 24 possible
such permutations, so the isometry group is actually isomorphic to S4 the sym-
metric group on four letters.

Often, we will focus on the subgroup of the tetrahedron’s isometry group con-
taining only the pure rotations, which are the ”orientation-preserving” isome-
tries of the tetrahedron. As a subgroup of order 12, this subgroup must be
isomorphic to A4, the group of even permutations on four letters, which is the
only order-12 subgroup of S4.

The subgroup structure of A4 is particularly relevant. A4 contains three
subgroups of order 2, each of which is generated by one of the rotations of order
2. A4 also contains a subgroup of order 4 containing all such rotations; this
subgroup contains no element of order 4, so it is isomorphic to V4, the Klein
four-group. Notably, A4 contains no proper subgroup of order greater than 4,
so any subgroup containing more than 3 nontrivial group elements must be the
whole group, and any subgroup containing both an element of order 2 and an
element of order 3 must be the whole group.
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2.2 Triangulated Surfaces

Definition 2.1 (Triangulated surface). A triangulated surface S = (V, F ) is a
pair of nonempty sets: V , the set of vertices of S, and a set F , the set of faces
(or triangles) of S. These are required to satisfy three axioms:

1. Each face f ∈ F is of the form f = {v1, v2, v3}, where vi ∈ V are distinct
elements.

2. The intersection of two distinct faces f1 6= f2 in F contains at most two
elements. (When f1 ∩ f2 = {v1, v2} with v1 6= v2, we say that f1 and f2
are adjacent.)

3. For every v ∈ V , the set of faces f ∈ F that contain v is non-empty
and it is possible to arrange these faces in a sequence (f1, f2, ..., fδ) such
that fi and fi+1 are adjacent for 1 ≤ i < δ. (The number δ is called the
degree of v, and is also often denoted δ(v). If, in addition fδ is adjacent
to f1, we say that v is an interior vertex, otherwise, we say that v is a
boundary vertex.)

We also define the set E of edges of S to be the set of 2-element subsets
e = {v1, v2} that are contained in some face f ∈ F . In particular, each face
f = {v1, v2, v3} contains three edges: {v2, v3}, {v3, v1}, and {v1, v2}. An edge
of S that belongs to only one face of S is said to be a boundary edge, otherwise,
if it belongs to two distinct faces of S, it is said to be an interior edge.

If all the edges of a surface are interior, then so are all the vertices, and we
say S has ‘no boundary’.

Definition 2.2 (Connectedness). A triangulated surface S = (V, F ) is said to
be connected if, for any two vertices v, v′ ∈ V , there exists a sequence of vertices
v = v1, v2, · · · , vk = v′ ∈ S such that {vi, vi+1} is an edge for all 1 ≤ i < k.

We can also refer connectedness to faces instead of vertices. Namely, a
surface S = (V, F ) is face-connected if for any f, f ′ ∈ F , there exists a sequence
of S-faces f = f1, f2, · · · , fk = f such that fi is adjacent to fi+1 for 1 ≤ i < k.
It can be shown that these two connectedness notions are equivalent: a surface
is connected if and only if it is face-connected.

Definition 2.3 (Automorphism, automorphism group). For a triangulated
surface S = (V, F ), a bijection α : V → V is an automorphism of S if
{v1, v2, v3} ∈ F iff {α(v1), α(v2), α(v3)} ∈ F . The set of automorphisms of
S forms a group under composition, which we denote Aut(S).

For any connected surface S, if some automorphism α ∈ Aut(S) fixes all the
vertices of a single face of S, then α must be the identity automorphism. This
is because, once α fixes all the vertices of one face, it must also fix all vertices
of the adjacent faces, so the connectedness of S guarantees that it in fact fixes
all vertices of all faces of S. Thus, for a connected triangulated surface, seeing
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where an autoorphism maps a single face is sufficient to completely determine
the automorphism. This means |Aut(S)| ≤ 6|F |, since a fixed face of S can, at
most, be mapped to each face of S in six ways.

Definition 2.4 (Maximally symmetric). A triangulated surface S = (V, F )
with |Aut(S)| = 6|F | is maximally symmetric.

Definition 2.5 (Orientation). Given a face f = {v1, v2, v3} ∈ F of a trian-
gulated surface S, an orientation of f is an ordering of the vertices of f (i.e.
clockwise or counterclockwise). This ordering depends only on the relative po-
sitions of the vertices in the ordering, not on the specific order in which they
are listed; that is, the orderings (v1, v2, v3), (v2, v3, v1), and (v3, v1, v2) are all
equivalent and can be denoted [v1, v2, v3]. Similarly, an orientation of an edge
e = {v1, v2} of S is an ordering of the two vertices of e. For each edge, there
are two possible orientations: [v1, v2] and [v2, v1].

An orientation of S = (V, F ) is a choice of orientation for each face f ∈ F
such that, whenever two faces share an edge (i.e. whenever f ∩f ′ = {v1, v2} = e
for some f, f ′ ∈ F ), the two faces f and f ′ induce opposite orientations on e. If
it is possible to define an orientation on S, then S is orientable.

Definition 2.6 (Position). Given two triangulated surfaces S = (V, F ) and
S′ = (V ′, F ′), a triple of matchings

p = {(v1, v′1), (v2, v
′
2), (v3, v

′
3)}

where f = {v1, v2, v3} ∈ F, f ′ = {v′1, v′2, v′3} ∈ F ′, is called a position. The set
of all possible position given a pair of surfaces S, S′ is P (S, S′).

Note that for a position, it’s not only the two faces of S, S′ that are impor-
tant, but it is also the exact matching of the vertices between them.

Definition 2.7 (Connected by a single roll). Consider the position

p = {(v1, v′1), (v2, v
′
2), (v3, v

′
3)}

and assume that {v1, v2}, {v′1, v′2} are internal edges of S, S′, respectively, i.e.,
there exist faces f = {v1, v2, v4} ∈ F, {v′1, v′2, v′4} ∈ F ′. Then, the position

p̂ = {(v1, v′1), (v2, v
′
2), (v4, v

′
4)}

is said to be connected to p by a single roll.

Note that for two surfaces with no boundaries S, S′, a position is connected
to exactly 3 other position by a single roll.

2.3 Homotopy and Fundamental Groups

Our investigation centers on the combinatorial notion of a triangulated sur-
face, but we begin by stating the traditional definitions of homotopy and the
fundamental group for a general topological space (taken from Hatcher) before
proceeding to state our combinatorial analogues. A proof of the compatibility
of the traditional and combinatorial formulations of the fundamental group is
given in the appendix.
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Definition 2.8 (Homotopy). A path in a topological space X is a continuous
map f : [0, 1]→ X. A homotopy of paths in X is a family of maps ft : [0, 1]→ X
for t ∈ [0, 1] such that (a) ft(0) and ft(1) are independent of t, and (b) the map
F : [0, 1]2 → X given by F (s, t) = ft(s) is continuous. If a homotopy exists
between two paths f and g, then those paths are homotopic and we write f ' g.
Moreover, ' is an equivalence relation.

Two paths f and g can be composed to obtain a product path gf that
follows f and then g so long as f(1) = g(0). If f and g are loops with the same
basepoint, i.e. f(0) = f(1) = g(0) = g(1) = x0, then the compositions fg and
gf are guaranteed to exist.

Definition 2.9 (Fundamental group). The fundamental group π1(X,x0) of a
space X is the group of equivalence classes under homotopy of loops based
at x0 under the operation of path composition. The group operation is well-
defined on these equivalence classes. Furthermore, the fundamental group, up to
isomorphism, is independent of the basepoint for path-connected spaces. Hence,
if X is path-connected, we can unambiguously write π1(X) for the fundamental
group of X.

In the following section we define separately the notion of a fundamental
group of a triangulated surface, but we show that our combinatorial definition
is agrees with the traditional definition given above.

Given a triangulated surface S = (V, F ) without boundary, we can define a
combinatorial analogue of the conventional fundamental group by considering
loops along the faces of S. Once we also define the notion of a combinatorial
holonomy group, this combinatorial fundamental group will help us prove an
important result on the structure of the combinatorial holonomy group.

Definition 2.10 (Path, loop, loop group). A path along S is a sequence of faces
fi ∈ F , 1 ≤ i ≤ n, such each fi is adjacent to both fi−1 and fi+1. A loop is a
path where f1 = fn. In other words, a loop on S is a sequence of faces, starting
and ending at the same face, that another triangulated surface could be rolled
along. Given a fixed ”base face” f ∈ F , the set of loops in S beginning and
ending at f forms a group under concatenation of loops—the loop group—which
we denote by Lf (S). The operation of concatenation of loops is denoted by ?.

To be entirely precise, Lf (S) is actually a group of equivalence classes of
loops, where two loops are considered equivalent if one can be obtained from
the other by adding or removing backtracking.

Definition 2.11 (Backtracking-equivalence). If l = (f1, f2, ..., fn) and l′ =
(f ′1, f

′
2, ..., f

′
m) are loops (i.e. f1 = fn and f ′1 = f ′m), then we consider l and l′

equivalent if one of the loops (say, l) can be obtained from the other (in this
example, l′) by replacing some portion of l of the form (fi, fi+1, fi+2 = fi) with
(fi). For example, the loops

l = (f1, f2, f3, f4, f3, f5, f1)
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and

l′ = (f1, f2, f3, f5, f1)

are equivalent (assuming the listed faces are adjacent as needed). It is straight-
forward to confirm that the group operation of concatenation is well-defined on
these equivalence classes of loops.

Theorem 2.1. Assuming our surface S is path-connected (i.e. that there exists
a path between any pair of faces of S), the group Lf (S) is independent of the
base face up to isomorphism.

Proof. If f, g ∈ F are faces and p is a path from f to g, then there is a group
homomorphism Lf (S) → Lg(S) given by l 7→ p ? l ? p−1. In particular, this
homomorphism is surjective, because any loop l′ ∈ Lg(S) is mapped to by the
loop p−1 ? l′ ? p ∈ Lf (S). This also shows that the homomorphism has an
inverse homomorphism Lg(S) → Lf (S) given by l 7→ p−1 ? l ? p, so it is an
isomorphism—i.e. Lf (S) ∼= Lg(S) for any f, g ∈ F .

We can now unambiguously write L(S) for the group of loops on S up to
isomorphism, so we will omit the base face in our notation except when it may
be relevant to the argument at play.

A lasso is a special and important type of loop in L(S): specifically, a lasso
is a loop that follows some path, loops directly around a single vertex, and then
returns along the original path. This is formalized in the following definition.

Definition 2.12 (Lasso). If p is a path from f1 to fn, v ∈ fn is an interior vertex
of fn, and l is the loop around v beginning and ending at fn whose existence is
guaranteed by property (3) of the definition of a triangulated surface (or that
loop’s inverse), then the loop p−1 ? l ? p is a lasso based at f1.

Definition 2.13 (Contractible loop group, contractibility). The subgroup Cf (S)
of Lf (S) generated by the set of all lassos (based at f) in Lf (S) is called the
group of contractible loops on S based at f . Like L(S), C(S) is unique up to
isomorphism by Theorem 2.1, so the base face will often be omitted for conve-
nience. The loops in C(S) are the contractible loops based at f .

This definition of contractibility agrees with the standard definition of null-
homotopic loops in a continuous sense; a combinatorial loop on S is contractible
iff the same loop, considered instead as a continuous loop in the underlying
topological space of S, is null-homotopic. A proof of this result is given in the
appendix. Similarly, we can consider two loops homotopic if their continuous
analogues in the underlying topological space are homotopic.

Theorem 2.2. C(S) is a normal subgroup of L(S).

Proof. Suppose c ∈ C(S) and l ∈ L(S). Then lcl−1 is homotopic to l1l−1,
which is clearly equal to the identity 1 ∈ C(S). Thus lcl−1 is null-homotopic,
so lcl−1 ∈ C(S).
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Definition 2.14. The fundamental group of a connected triangulated surface
S is defined as π1(S) := L(S)/C(S).

This definition agrees with the traditional notion of a fundamental group in
that the fundamental group of a surface is isomorphic to the fundamental group
of the surface’s underlying topological space. (See the appendix for details.)

3 The Combinatorial Holonomy Group

Now, we proceed to define the combinatorial holonomy group. Let S = (V, F ) be
a maximally symmetric triangulated surface and let S′ = (V ′, F ′) be a connected
triangulated surface without boundary and with at least two faces. Recall that
P (S, S′) is the set of all positions of S on S′.

There exist two natural *face projections* φ : P (S, S′) → F and φ′ :
P (S, S′)→ F ′ that map a position to the face of S or S′ (respectively) that posi-
tion aligns with the other surface; for instance, if p = {(v1, v′1), (v2, v

′
2), (v3, v

′
3)} ∈

P (S, S′), then φ(p) = {v1, v2, v3} ∈ F and φ′(p) = {v′1, v′2, v′3} ∈ F ′.
Now, Aut(S) acts naturally on P (S, S′) by applying to S in-place: for any

α ∈ Aut(S), define

α({(v1, v′1), (v2, v
′
2), (v3, v

′
3)}) = {(α(v1), v′1), (α(v2), v′2), (α(v3), v′3)}

Since α permutes the vertices of S without changing which face of S′ it lies on,
α(φ′(p)) = φ′(α(p)) for all p ∈ P (S, S′). Furthermore, because S is maximally
symmetric by assumption, it’s clear that if φ′(p1) = φ′(p2) for some p1, p2 ∈
P (S, S′), then there exists some β ∈ Aut(S) such that p2 = β(p1). This means
that the action of Aut(S) on each of the ”fibers”

P (S, S′)f ′ = (φ′)−1(f ′) = {p ∈ P (S, S′) | φ′(p) = f ′}

is simply transitive. (Transitivity follows immediately from the fact that S is
maximally symmetric; that the action is free is a consequence of the observation
that an automorphism of S is completely determined by where it sends a single
face.)

Before proceeding, we take a moment to state an important lemma.

Lemma 3.1. Let {v1, v2, v3}, {v5, v6, v7} ∈ F be faces of S (where S = (V, F )
is, as above, a connected maximally symmetric triangulated surface without
boundary). Also let v4, v8 ∈ V be the unique vertices such that {v1, v2, v4} and
{v5, v6, v8} are also faces of S. Finally, let α1, α2, β ∈ Aut(S) be the unique
automorphisms of S such that

(α1(v1), α1(v2), α1(v3)) = (v1, v2, v4) and (α2(v5), α2(v6), α2(v7)) = (v5, v6, v8).

meanwhile (β(v1), β(v2), β(v3)) = (v5, v6, v7). Then β ◦ α1 = α2 ◦ β.

The proof of the lemma is a consequence of the definitions of the automor-
phisms and the fact that an automorphism is entirely defined by where it sends
the vertices of a single face.
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Now, pick two fixed faces f ′1, f
′
2 ∈ F ′ of S′, say, f1 = {v′1, v′2, v′3} and f ′2 =

{v′1, v′2, v′4}, and consider rolling S from f ′1 to f ′2 over the edge e′ = {v′1, v′2}.
This roll can be thought of as the unique mapping ρe′ : P (S, S′)f ′1 → P (S, S′)f ′2
between fibers such that

ρe′({(v1, v′1), (v2, v
′
2), (v3, v

′
3)}) = {(v1, v′1), (v2, v

′
2), (v4, v

′
4)}.

The vertex v4 is appropriately chosen as the vertex of S such that {v1, v2, v4} ∈
F ; for any position in the fiber P (S, S′)f ′1 , this choice is unique, so ρe′ is indeed
uniquely defined. Then, applying Lemma 3.1, we have the crucial relation

ρe′(β(p)) = β(ρe′(p)) (1)

for all β ∈ Aut(S) and all p ∈ P (S, S′) (where e′ is chosen appropriately).

Theorem 3.2. Let S = (V, F ) be a connected, maximally symmetric triangu-
lated surface without boundary, let S′ = (V ′, F ′) be a connected triangulated
surface, and let f ′ ∈ F ′ be a face of S′. Then each choice of p ∈ P (S, S′)f ′

gives a unique holonomy homomorphism hp : Lf ′(S
′) → Aut(S). Moreover,

hβ(p) = β ◦ hp ◦ β−1 for all β ∈ Aut(S).

Proof. Let λ = (f ′1, f
′
2, .., f

′
d) ∈ Lf ′(S

′) be a loop, where f ′ = f ′1 = f ′d. For
1 ≤ i < d, let e′i be the edge shared by both f ′i and f ′i+1. Now, beginning with
p = p1 ∈ P (S, S′)f ′ , we inductively define

pi+1 = ρei(pi)

for 1 ≤ i < d, so pi ∈ P (S, S′)f ′i for all 1 ≤ i ≤ d.
Note pd = (ρd−1 ◦ ρd−2 ◦ · · · ◦ ρ1)(p), so pd is entirely determined by the

initial position p and the choice of the loop λ. Hence, there exists a unique
α ∈ Aut(S) such that pd = α(p), so we can define hp(λ) := α.

To show that hp is a homomorphism, suppose λ̃ = (f̃ ′1, f̃
′
2, ..., f̃

′
d̃
) ∈ Lf ′(S′)

is another loop, and consider the composition in Lf ′(S
′)

λ ? λ̃ = (f ′1, ..., f
′
d = f̃ ′1, ..., f̃

′
d̃
).

As before, we can inductively define a sequence of positions

(p1, ..., pd = pd, ..., pd+d̃−1)

such that pi and pi+1 are connected by a single roll for all 1 ≤ i < d+ d̃− 1. In
particular, p1, ..., pd are as above, and, writing ẽi for the edge shared by faces
f̃ ′i−1 and f̃ ′i , we have pi+1 = ρẽi−d+1

(pi) for d ≤ i ≤ d+ d̃− 2. Thus,

hp(λ ? λ̃)(p) = pd+d̃−1 =
(
ρẽd̃−1

◦ ρẽd̃−2
◦ · · · ◦ ρẽ1

)
(pd)

= ρẽd̃−1
◦ ρẽd̃−2

◦ · · · ◦ ρẽ1 (hp(λ)(p))

= (hp(λ))
(
ρẽd̃−1

◦ ρẽd̃−2
◦ · · · ◦ ρẽ1(p)

)
= hp(λ)

(
hp(λ̃)(p)

)
=
(
hp(λ) ◦ hp(λ̃)

)
(p)
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where the third line follows from (1).
To prove the final relation, let β ∈ Aut(S) and let p̃ = β(p). Then, by (1),

we have that

p̃2 = ρe1(p̃) = ρe1(β(p))

= β(ρe1(p))

= β(p2),

so repeated application of (1) gives p̃i = β(pi), and in particular, p̃d = β(pd).
Thus,

(hβ(p)(λ) ◦ β)(p) = hβ(p)(λ)(β(p))

= p̃d

= β(pd)

= (β ◦ hp(λ))(p).

Since the action of Aut(S) on the fiber P (S, S′)f ′ is simply transitive, this
implies that hβ(p)(λ) ◦ β = β ◦ hp(λ). Because λ was chosen arbitrarily, we
conclude that hβ(p) = β ◦ hp ◦ β−1.

Corollary 3.1. The image hp(Lf ′(S
′)) ⊂ Aut(S) is a subgroup of Aut(S) whose

conjugacy class is independent of p and f ′.

Proof. The independence of the conjugacy class from p follows immediately
from the relation hβ(p) = β ◦ hp ◦ β−1. To prove independence from f ′, suppose
f ′1 ∈ F ′ is another face of S′, and, as we are assuming S′ is connected, let
γ = (f ′1, f

′
2, ..., f

′
n = f ′) be a path from f ′1 to f ′. By Theorem 2.1, for each loop

l ∈ Lf ′1(S′), there exists a unique loop

λ = (f ′ = f̃ ′1, f̃
′
2, ..., f̃

′
d = f ′) ∈ Lf ′(S′)

such that l = γ ? λ ? γ−1. Let e′i be the edge between the f ′i and f ′i+1 for

1 ≤ i < n, and let ẽ′i be the edge between f̃ ′i and f̃ ′i+1 for 1 ≤ i < d. Then,
fixing some p ∈ P (S, S′)f ′1 we have

hp(l)(p) = hp(γ ? λ ? γ
−1)(p)

= (ρ−1e′1
◦ · · · ◦ ρ−1e′n−1︸ ︷︷ ︸
γ−1

◦ ρẽ′d−1
◦ · · · ◦ ρẽ′1︸ ︷︷ ︸
λ

◦ ρe′n−1
◦ · · · ◦ ρe′1︸ ︷︷ ︸
γ

)(p) (2)

where the second equality follows from the definition of the holonomy homo-
morphism hp.

Now let p̃ ∈ P (S, S′)f ′ be the unique position such that

p̃ = (ρe′n−1
◦ · · · ◦ ρe′1)(p).
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Then we can rewrite the above equation as follows:

hp(l)(p) = (2)

= (ρ−1e′1
◦ · · · ◦ ρ−1e′n−1

◦ hp̃(λ) ◦ ρe′n−1
◦ · · · ◦ ρe′1)(p)

= (hp̃(λ))(ρ−1e′1
◦ · · · ◦ ρ−1e′n−1

◦ ρe′n−1
◦ · · · ◦ ρe′1)(p) by (1)

= hp̃(λ)(p).

Note that the maps ρ are bijections between fibers of the position space P (S, S′),
whereas hp̃(λ) is an automorphism of S that acts on each of those fibers, so the
use of the function composition notation is not entirely precise. Regardless, since
the action of Aut(S) on P (S, S′)f ′1 is simply transitive, we can conclude that
hp(l) = hp̃(λ). And because there is a bijection between the loops l ∈ Lf ′1(S′)
and the loops λ ∈ Lf ′(S

′), we have hp(Lf ′1(S′)) = hp̃(Lf ′(S
′)) ⊂ Aut(S), as

desired.

Definition 3.1 (Holonomy group). Let S be a maximally symmetric triangu-
lated surface without boundary and let S′ be a triangulated surface without
boundary. Let f ′ be a face of S′ and let p ∈ P (S, S′)f ′ . The holonomy group of
S over S′ based at p is the image Holp(S, S

′) := hp(Lf ′(S
′)) ⊂ Aut(S).

Recall that the contractible loop group Cf ′(S
′) is a normal subgroup of

Lf ′(S
′) generated by lassos.

Definition 3.2 (Restricted holonomy group). The restricted holonomy group
is the image Holp0(S, S′) := hp(Lf ′(S

′)) E Holp(S, S
′).

By Theorem 3.2, the conjugacy classes of both Holp(S, S
′) and Holp0(S, S′)

are independent of p and of the implicit base face f ′, so we often omit the initial
position p from our notation when discussing general properties of the holonomy
group, with the understanding that the discussion is valid for any choice of a
base face f ′ of S′ and an initial position p ∈ P (S, S′)f ′ .

Note Hol0(S, S′) E Hol(S, S′), since the restricted holonomy group is the im-
age of a normal subgroup under a surjective homomorphism, so we can construct
the quotient Q = Hol(S, S′)/Hol0(S, S′).

Theorem 3.3. There exists a unique surjective homomorphism ψ : π1(S′)→ Q
such that the diagram below commutes.

0 C(S′) L(S′) π1(S′) 0

0 Hol0(S, S′) Hol(S, S′) Q 0

i1

h|C(S′) h

q1

ψ

i2 q2

Proof. In the diagram, the top and bottom rows are both short exact sequences:
i1 and i2 are the inclusion homomorphisms, and q1 and q2 are the quotient
homomorphisms.

10



Note that Ker(q1) ⊂ Ker(q2 ◦ h), since the kernel of q1 is C(S′) and h maps
contractible loops into the subgroup Hol0(S, S′) E Hol(S, S′), which is precisely
the kernel of q2. Thus, by the universal property of the quotient, there exists a
unique homomorphism ψ : π1(S′)→ Q such that q2 ◦ h = ψ ◦ q1. Furthermore,
ψ is surjective because q2 ◦ h is surjective.

The structure described by the diagram allows us to build up Hol(S, S′)
from Hol0(S, S′) and π1(S′). Specifically, having computed Hol0(S, S′), we can
find Hol(S, S′) by picking a representative loop γ from each homotopy class
[γ] ∈ π1(S′) and computing the coset h(γ)Hol0(S, S′). In other words, we
can break down the holonomy group into the restricted holonomy group and
the additional cosets of the restricted holonomy group created by nontrivial
homotopy classes from the fundamental group. This lets us study holonomy
groups by examining restricted holonomy and ”fundmanetal group holonomy,”
which makes computing holonomy groups slightly easier. Fortunately, it’s not
necessary to check every homotopy class in most cases since we can also use
information about the subgroup structure of Aut(S) to determine Hol(S, S′) by
process of elimination.

In fact, we frequently can limit our search not only to subgroups of Aut(S),
but rather the group of orientation-preserving automorphisms of S. We say
an automorphism α of a maximally symmetric orientable surface S (without
boundary) is orientation-preserving if, given a fixed orientation of S, for each
face {v1, v2, v3} of S with orientation [v1, v2, v3], the face {α(v1), α(v2), α(v3)}
has orientation [α(v1), α(v2), α(v3)].

Theorem 3.4. Let S be a connected, maximally symmetric surface without
boundary, and let S′ be a connected triangulated surface. If both S and S′ are
orientable, then Hol(S, S′) contains only orientation-preserving automorphisms
of S.

Proof. Pick a position

p = {(v1, v′1), (v2, v
′
2), (v3, v

′
3)} ∈ P (S, S′)f ′

where f = {v1, v2, v3} is a face of S and f ′ = {v′1, v′2, v′3} is a face of S′. Since we
assume both S and S′ are orientable, without loss of generality, pick orientations
of each such that f has orientation [v1, v2, v3] and f ′ has orientation [v′1, v

′
2, v
′
3].

Let Φ : φ(p)→ φ′(p) be the bijection mapping each vertex of f to the vertex
of f ′ with which it is aligned by p. For example, using the position p defined
above, Φ(v1) = v′1. Given fixed orientations of S and S′, we say a position p
is orientation-aligning when f has orientation [v1, v2, v3] if and only if f ′ has
orientation [Φ(v1),Φ(v2),Φ(v3)]. Given an orientation-aligning position p, the
position α(p) is orientation-aligning if and only if α ∈ Aut(S) is orientation-
preserving.

Since each automorphism in the holonomy group is induced by rolling along
a loop (i.e. a sequence of single rolls) from an initial position, it suffices to show
that applying a single roll to an orientation-aligning position yields another
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orientation-aligning position. So, without loss of generality, let f̃ = {v1, v2, v4}
be the face adjacent to f over edge e = {v1, v2} on S and likewise let f̃ ′ =
{v′1, v′2, v′4} be a face adjacent to f ′ over edge e′ = {v′1, v′2} on S′. Now let
ρe′ : P (S, S′)f ′ → P (S, S′)f̃ ′ be the rolling map over e′, so

ρe′(p) = {(v1, v′1), (v2, v
′
2), (v4, v

′
4)}.

By the definition of orientability, the face f̃ of S has orientation [v2, v1, v4] and
the face f̃ ′ of S′ has orientation [v′2, v

′
1, v
′
4], so ρe′(p) is orientation-aligning.

When both S and S′ are orientable, this theorem allows us to limit our search
for the holonomy group Hol(S, S′) to subgroups of the group of orientation-
preserving automorphisms of S, rather than the full automorphism group. This
helps significantly, since for maximally symmetric surfaces S, the group of
orientation-preserving automorphisms has order |Aut(S)|/2 = 3|F |.

We now restrict our attention to computing Hol0(S, S′), the restricted holon-
omy group. Our work here depends on the fact stated earlier that C(S′) is gen-
erated by lassos. Intuitively, it should be clear that the holonomy induced by
rolling along a lasso (up to conjugation) depends only on the loop portion of the
lasso, not the path taken from the base face to that loop and back. Formally,
let l = p−1 ? l∗ ? p be a lasso around a vertex v′ of S′, where p is a path from a
face f ′ to f ′∗ and l∗ is the loop portion of the lasso, i.e. l∗ is a loop based at f ′∗

such that every face in the loop contains v′, and such that every face containing
v′ in S′ is included in l∗ exactly once (with exception of the f ′∗, which must be
included twice in order for l∗ to be a loop).

Theorem 3.5. If l = p−1 ? l∗ ? p is a lasso as defined above, then the automor-
phism of S induced by l has the same order as the automorphism of S induced
by l∗.

Proof. Using the reasoning of Corollary 3.1, h(l) and h(l∗) are conjugate ele-
ments in Aut(S), and hence have the same order.

This allows us to state a useful fact that greatly speeds up the process of com-
puting the restricted holonomy group.

Corollary 3.2. Because we assume S to be maximally symmetric, every vertex
of S has the same order, so suppose every vertex of S has degree n. Let l be a
lasso on S′ around a vertex v′. Then |h(l)| = n/gcd(n, δ(v′)).

Proof. By Theorem 3.5, the automorphism h(l) induced by l is conjugate to the
automorphism h(l∗) induced by a loop l∗ directly around v′ (as defined above).
In particular, |h(l)| = |h(l∗)|.

Rolling S along l∗ fixes some vertex v of S at the vertex v′ of S′. Moreover,
l∗ contains exactly δ(v′) rolls, all of which are in the same direction around v′.
Thus, rolling S along l∗ once will induce the automorphism of S that rotates
S around v by δ(v′) steps. Clearly, this automorphism will be the identity if
and only if n|δ(v′). In general, the order of h(l∗) will be the minimum natural
number k such that n|kδ(v′), that is, |h(l∗)| = n/gcd(n, δ(v′)).
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In the particular case where S is the tetrahedron, it follows that if l is a lasso
on a triangulated surface S′ without boundary, then h(l) has order 1 or 3, i.e.,
hl(l) is either trivial or a rotation about a fixed vertex of the tetrahedron. This
is because every vertex of the tetrahedron has degree 3, so clearly if 3|δ(v′),
then h(l∗) will be trivial. On the other hand, if 3 - δ(v′), then gcd(3, δ(v′)) = 1,
so h(l∗) will have order 3.

As an illustration of the results given so far, we compute the holonomy group
of the tetrahedron S over the small hexagonal torus S′ (see the figure).

0 3 641

1

2

5

60 3

2 563

2

13 4 0

4

Figure 1: The small hexagonal torus, an orientable triangulated surface without
boundary with 7 vertices (numbered here 0-6) and 14 faces.

Every vertex of S′ has degree 6, so by Corollary 3.2, Hol0(S, S′) is trivial,
and any non-trivial holonomy must come from the fundamental group. Since
Hol0(S, S′) is trivial, Q = Hol(S, S′)/Hol0(S, S′) ∼= Hol(S, S′), so by Theorem
3.3, ψ maps every homotopy class in the fundamental group to a single element of
the holonomy group. Furthermore, the image of ψ (i.e. Hol(S, S′)) is determined
by where it sends the generators of π1(S′). In this case the fundamental group
is isomorphic to Z2, and a quick manual computation using arbitrarily chosen
representatives of the two homotopy classes that generate π1(S′) shows that ψ
maps these generators to distinct elements of order 2 in Hol(S, S′). Since these
elements generate the holonomy group, it follows that Hol(S, S′) ∼= V4, the Klein
four-group.

The methods discussed in this section focus on the relationships between
the topological properties of surfaces and their holonomy groups. However,
the geometry of the surface (i.e. the particular way in which the surface is
triangulated) also affects the holonomy: for instance, the holonomy group of
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the tetrahedron over a triangulation of the torus with twice as many faces as
the triangulation shown in the figure above could be the trivial group, even
though both tori are topologically indistinguishable. In the following section,
we give some examples of the various holonomy groups that are possible for the
tetrahedron over tori and Klein bottles. We then proceed to develop tools to
leverage the geometry of a surface to constrain its possible holonomy groups.

4 Determining and Comparing Holonomy Pat-
terns by Adjusting Variables

4.1 Determining Holonomies of Tori with vertices order 6

In this document a torus (plural tori), refers to a triangulated surface without
boundary that results from (S1), the circle, multiplied by itself n times for
n = orderofdimension. In this document all tori are S3 or S4.

When laid out on a 2D plane, the flat edges of a hexgrid, comprising of the
base of the triangles, are considered the top and bottom. To create the various
tori in question, the top and bottom edges are equated and the sides are equated
to create a donut-like shape (Figure 2).

Figure 2: Hexgrid plane with demarcated alignments of sides, which, when
aligned, produce a regular Torus

This leads us to the four different ways to create a torus: adjusting the
number of rows, adjusting the turning number of either side, and adjusting the
length of each row.

Definition 4.1 (Adjusting the number of rows). For a true torus, the number
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of horizontal rows must be at least 3. If this was not the case, multiple triangles
would be defined by the same 3 vertices, because the construction would merely
be either two rows back to back or just one row by itself with boundaries. Hence
they would disobey the definition of a surface, wherein unique triangles must
be defined by three unique vertices (Definition 2.1).

Any torus with 4N rows will have trivial holonomy when rolled vertically
through the centre of the object.

Hence, when creating a torus, the number of rows can influence the holonomy
due to a four row pattern related to the trivial holonomy.

An issue that had to be accounted for when making the torus, was the
alignment of the triangles when the top and bottom edges were connected.
When the surface had 2M rows the edges could easily be connected (Figure 3).

Figure 3: Hexgrid plane wrapped into aligned cylinder

However, if the Torus has 2M + 1 rows the edges will not align (Figure 4).

Figure 4: Hexgrid plane with odd number of rows wrapped into cylinder. The
triangles do not align.

Definition 4.2 (Adjusting the turning number). If one side is twisted 180
degrees and an experimenter rolls an object along a horizontal path, the rolled
object will follow the path it would have on a mobius strip. However, one
side does not need to be twisted 180 degrees for a change in holonomy: for a
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continuous surface one side can be twisted any angle between 0 and ∞. For a
combinatorial surface it can be twisted any multiple of 360/(number of rows).

To get unique holonomy, because the number of rows is set in a pattern of
length four, the Torus can have no twist, denoted 0; it can have one side twisted
so that its second row matches the first row of the other side; have a side twisted
so the third row is matched by the first; and finally be twisted so the fourth row
is matched by the first. When the rows are twisted so the fifth row matches the
first, the four row holonomy pattern repeats and hence is equivalent to no twist,
denoted 0. Since the edges of the plane undulate, mismatching by 2K + 1 (any
odd numbered rotation) causes ridges to align with ridges and hence cannot be
done without increasing or decreasing the order of the faces on the connecting
vertices.

Definition 4.3. Adjusting the row length: The length of each row changes the
holonomy, because when a tetrahedron is rolled along a horizontal path, it loops
through each of the four faces being down. Therefore, if the band length is not
4X, the holonomy when it rolls off the edge of the plane, and hence over onto
the other edge, will be adjusted by one face of the tetrahedron.

Similar to an odd numbered rotation, an odd number of triangles in a row
will make ridges become troughs and troughs ridges and hence will cause an
increase or decrease of the connecting vertex order. An odd numbered rotation
combined with an odd numbered row length matches the troughs and ridges
and hence results in all vertices being order 6.

Each of the variables have four positions which produce different holonomies.
If you go to the fifth position, it is equivalent to the first. Therefore the positions
of each variable are listed in modulo 4, also denoted Z/4Z. In order to classify
the changes each Z/4Z position all three variables have on the holonomy of a
torus, each setting is adjusted whilst the others are kept constant. Because this
initial analysis is focused of a regular vertex order of six, odd rotations with odd
band lengths are considered one of the basic settings and are included in this
list. The different setups are described by ”(number of rows, turning number,
band length)” where ”(0, 0, 0)” is the holonomy of a regular torus with trivial
holonomy.

The ”Left” and ”Right” mean the top side of the net of the hexgrid, com-
binatorial layout is pulled left or right respectively in order to line up with the
bottom side of the net (the issue described in the ”number of rows” section
previously). Table ?? depicts the various holonomies produced by the different
basic setups of a surface.

With these basis positions established we can start to combine them to see
the regular changes in holonomy (Table 3).

A clear pattern from the setups is that they are all Z/2Z except for the
regular, trivial torus. This means that on any chosen face there can be the
possibility of two different orientations of the faces of the tetrahedron. When
the basic setups are combined they also usually create Z/2Z orientations. When
two of the same orientations of the basic setups are combined they generally do
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Setup (R,T,L) Holonomy Permutations
(0, 0, 0) Left Z/2Z (2,3)
(0, 0, 0) Right Z/2Z (1,4)
(1, 0, 0) Z/4Z (1,3,4,2)
(3, 0, 0) Right Z/4Z (1,2,4,3)
(0, 0, 2) Z/4Z (2,3)
(0,1,3) Z/2Z× Z/2Z V
(2, 3, 3) D4 D4

Table 1: Holonomies of Basic Setups of Klein Bottle

Setup (R,T,L) Holonomy Combinations Permutations
(1, 1, 1) Left Z/2Z ((1, 3)(2, 4))2 (1,3)(2,4)
(1, 1, 3) Right Z/2Z ((1, 2)(3, 4))2 (1,2)(3,4)
(0, 2, 2) Trivial ((1, 4)(2, 3))2 -
(2, 2, 0) Z/2Z ((1, 4)(2, 3)2 (1,4)(2,3)
(2, 0, 2) Z/2Z ((1, 4)(2, 3))2 (1,4)(2,3)
(2, 3, 3) Z/2Z× Z/2Z (1,4)(2,3)(1,3)(2,4) V

Table 2: Holonomies of Combination Setups of Torus

not change the holonomy, because the same faces are in the same positions no
matter which way they are produced.

The two significant arrangements are (0, 2, 2) and (2, 3, 3). (0, 2, 2) has a
combination of two 1up, 4right arrangements, but because the surface can be
decomposed into a generator vector diagram (Figure 5), wherein the patterns
of vertices on the contractible plane repeat at the end of each generator. The
turn by two equates the origin with the generator a unit vector directly to the
left.

The removal of two triangles creates the same vector. When you add these
two vectors they equate to one of the trivial generators pictured, and hence
produce trivial holonomy.

The holonomy of (2, 3, 3) is also interesting because it is Z/4Z. This results
because each of the original setups produce different faces down when the re-
sultant orientations of the (2, 0, 0) setup is rolled through the (0, 3, 3) path it
produces the 2left orientation. The same happens when the (0, 3, 3) setup is
rolled along the (2, 0, 0) path.

4.2 Determining Holonomy Patterns of Klein Bottles with
vertices order 6

Continuing from Section 4.1, Klein Bottles also produce interesting holonomies
with surfaces comprised only of vertices with order 6. A Klein Bottle is a non-
orientable surface without boundary. It can be visualised in 3D in Figure 6, but
in reality the bottle does not intersect itself.
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Figure 5: Generators of regular, trivial torus on hexgrid.

Figure 6: A triangulated 3D visualisation of a Klein Bottle

Similar to a torus, to create the various Klein Bottles in question, the top
and bottom are connected to each other and the sides are connected to each
other to create a donut-like shape. Unlike a torus, when the sides are connected
one side is rotated 180 degrees (Figure 7).

When adjusting the Klein Bottle there are the same three variables as in
Section 4.1. In this section however, another variable has been added, which
corresponds to the turning number of the flat top and bottom edges.

Definition 4.4 (Adjusting the flat edge turning number). Similarly to the
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Figure 7: Hexgrid plane with demarcated alignments of sides, which, when
aligned, produce a regular Klein Bottle

triangulated edge turning number, the flat edge turning number adjusts the
holonomy by aligning the first triangle on the bottom edge with the last triangle
on the top edge (the identity case); by aligning the first triangle on the bottom
edge with the second to last triangle on the top edge; or any other setup of twists
up to ∞. Unlike all other settings we have discusses this setup is in modulo
2, because the pattern of trivial holonomy repeats every turns. This is because
each twist actually skips two triangles in each row, since the up triangles only
have a single vertex on the top edge, not a triangle edge.

Because diagonally opposite corners are made equivalent in a Klein Bottle,
the additional turn caused by different distribution of triangles in alternating
rows (Figure 4) is now applied to the even numbered number of rows. When
creating a torus, a plane with row length and turn number associated with trivial
holonomy of both a torus and a Klein Bottle would associate the edges of the
triangle’s 0 in each row, which are in the same vertical orientation to each other
in an even numbered row (0 and 2). Alternatively, each even numbered row
in the plane to create a Klein Bottle would have an overhanging first triangle,
and an indented final triangle. When a Klein bottle is created these two will be
associated, but the overhang and the indent will not align. In odd numbered
rows the first triangle of the first row will be overhanging and the last triangle
of the last row will be overhanging, which result in aligned triangles.

The setups of the Klein Bottle planes are denoted ’(row number, triangulated
edge turning number, row length, flat edge turning number)’.

1,3 are opposite of above
With these basis positions established we can start to combine them to see

the regular changes in holonomy (Table ??).
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Setup (R,T,L) Holonomy Combinations Permutations
(1, 1, 1) Left Z/2Z ((1, 3)(2, 4))2 (1,3)(2,4)
(1, 1, 3) Right Z/2Z ((1, 2)(3, 4))2 (1,2)(3,4)
(0, 2, 2) Trivial ((1, 4)(2, 3))2 -
(2, 2, 0) Z/2Z ((1, 4)(2, 3)2 (1,4)(2,3)
(2, 0, 2) Z/2Z ((1, 4)(2, 3))2 (1,4)(2,3)
(2, 3, 3) Z/2Z× Z/2Z (1,4)(2,3)(1,3)(2,4) V

Table 3: Holonomies of Combination Setups of Torus

Setup (R,T,L) Holonomy Permutations
(0, 0, 0) Left Z/2Z (2,3)
(0, 0, 0) Right Z/2Z (1,4)
(1, 0, 0) Z/4Z (1,3,4,2)
(3, 0, 0) Right Z/4Z (1,2,4,3)
(0, 0, 2) Z/4Z (2,3)
(0,1,3) Z/2Z× Z/2Z V
(2, 3, 3) D4 D4

Table 4: Holonomies of Basic Setups of Klein Bottle

5 Method for Restricting Holonomy

In general, it is fairly easy to find surfaces that have either trivial or full tetrahe-
dral holonomy. It is more difficult to find surfaces that have small but nontrivial
holonomy. Above, we gave an example of a surface with tetrahedral holonomy
V4. Now, we turn our attention to finding a method to construct surfaces with
tetrahedral holonomy Z/3Z.

5.1 Restricting holonomy of rolling tetrahedron over ori-
entable surfaces to subgroup of Z/3Z

Let’s consider the holonomy of rolling a tetrahedron S′ over a closed, path-
connected orientable surface S. We are interested in finding the surfaces with
specific holonomy groups such as Z/3Z or the trivial holonomy.

Definition 5.1 (Neighborhood of a face). For a face f ∈ S, define the neigh-
borhood of f , Cl(f), to be the set of all vertices of S that do not lie in f , but
lie in some faces adjacent to f .
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We can define an equivalence relation on the set of vertices of S, such that
two vertices v, w are equivalent if and only if there exists a finite rolling that
brought a vertex x of the tetrahedron S′ which is ”standing” on v to the position
w (it means that we change from the some position of the form {(x, v), · · · } to
{(x,w), · · · }). Due to the property of the tetrahedron, if v ∈ Cl(f) and x ∈ S′
is standing on v, then by rolling this tetrahedron in simple paths, we can let x
reach any vertices in Cl(f). So essentially, all the possible vertices that x can
reach can be identified by expanding continually from v to all the Cl(f) that
contains v, and to all the neighborhood of the faces that contain those vertices
we just identified, and so on. Formally, we can define this equivalence relation
as followed:

Definition 5.2 (positional equivalence). We say that two vertices v, w are
positional equivalent if there exists a finite sequence of faces f1, f2, · · · , fk such
that v ∈ Cl(f1), Cl(fi)∩Cl(fi+1) 6= ∅ for all 1 ≤ i ≤ n−1, and w ∈ Cl(fk). We
denote it as v ' w and say that v is positional connected to w by (f1, · · · , fk).

It is simple to check that this is indeed an equivalence relation. It is obvious
that v ' v for any v ∈ Vert(S). It is also reflexive, since if v ' w, and
(f1, f2, · · · , fk) is a finite sequence of faces that connects v to w, then the inverse
sequence (fk, fk−1, · · · , f1) will connect w to v, so w ' v as well. Finally, if v is
connected to w by (f1, · · · , fk), and w is connected to z by (fk+1, · · · , fn), then
v is connected to z by (f1, · · · , fn). Hence, v ' w and w ' z imply that v ' z,
or it is transitive.

Property 5.1. Let v, w ∈ Vert(S), and assume that the initial orientation
is {(x, v), · · · }. Then there exists a finite rolling that turns {(x, v), · · · } to
{(x,w), · · · } if and only if v ' w.

Proof. If v ' w, assume that v is positional connected to w by (f1, f2, · · · , fn).
Let vi = Cl(fi)∩Cl(fi+1) for 1 ≤ i ≤ n− 1. We proceed by rolling S′ in a path
through f1 moving x from v to v1, and inductively proceed from vi to vi+1, until
we let x touches w. So we will turn {(x, v), · · · } to {(x,w), · · · } in a sufficient
way of rolling.

Assume that there exists a finite rolling that turns {(x, v), · · · } to {(x,w), · · · }.
Let that roll be (f1, f2, · · · , fn).
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By defining this equivalence relation, we can classify all the vertices into
equivalence classes, each class contains all vertices that are reachable by x if x
is standing on one of its vertices. Define an undirected graph G = (V,E) where
V is the set of all vertices of S. Two vertices v 6= w are connected by an edge
if there exists a face f such that v, w ∈ Cl(f). We can see that the equivalence
relation defined as above can be interpreted as connectedness in G: v ∼ w if
and only if v and w are connected by a path in G. The equivalence classes are
then the connected components of G.

Lemma 5.1. Let v ∈ S be a vertex and assume that S′ is standing on a face
f of S that contains v. Assume that v is not equivalent to all of its neighbors
(which are the vertices that lie on the edges containing v), then the holonomy
group is either Z/3Z or trivial.

Proof. Assume that the vertex of S′ touching v at the moment is x. We claim
that x is the only possible vertex that can reach v after any rolling. Assume the
contradiction that any some rolls, a vertex x′ 6= x will stand at v. Starting from
the initial position, we roll the tetrahedron to a position that x′ touches S, and
x is standing at v (it’s always possible to do this). This means that x′ will be
standing at a neighbor of v. By our assumption, x′ can never reach v since v
is not equivalent to any of its neighbors, a contradiction. Hence, after any rolls
back to the initial face, we guarantee that the vertex standing at v must be x,
and thus the holonomy group can only be either Z/3Z or trivial.

For convenience, we call a vertex v of S isolated if it is not equivalent to all of
its neighbors. Due to theorem 3.??, the holonomy group H(S, S′) is independent
of the base face, up to an isomorphism. Hence, if there exists an isolated vertex
somewhere, then it is sufficient to conclude that the holonomy is a subgroup of
Z/3Z. This gives a helpful tool to restrict the holonomy into only two possible
choices by looking locally at a specific vertex or face.

The following claim gives a ”sufficient” condition for a surface to have trivial
or Z/3Z holonomy. Assume that we are touching the face f = {v1, v2, v3} of
S, and assume that the vertices of the tetrahedron touching S′ is v′1, v

′
2, v
′
3, in

particular v′i touches vi.

Lemma 5.2. If the holonomy group is trivial or Z/3Z, then either one of vi is
isolated or all the vertices in Cl(f) are isolated.

Proof. Since the holonomy group is either trivial or Z/3Z, then there must either
exist vertex vi of S that fixed the vertex v′i of S′ (which means after any rolling
in a loop, it can only be v′i that touches vi), or the vertex not touching S is
fixed in that position. Assume the first case, we will show that vi is isolated.
Assume the contrary that vi is not isolated, then there is w adjacent to vi such
that vi ∼ w. We roll the tetrahedron to the face containing both w, vi. Then,
since w ∼ vi, there exists a loop that rolling the tetrahedron through that loop
will change v′i from standing at vi to standing at w. At this moment, a vertex
v 6= v′i of the tetrahedron S′ will stand at vi, and then by rolling S′ to the
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original face, we get a position that v′i does not stand at vi, which is contrary
to our assumption. Hence, vi is isolated.

Assume the second case, let v be the vertex not touching the surface S.
Since when we roll back to f in any paths, we must bring v to the untouching
position, and thus this is only possible if and only if v is the only vertex that
can touch the vertices in Cl(f), and thus all of them must be isolated.

Theorem 5.3. The holonomy group is a subgroup of Z/3Z if and only if the
face it’s standing on has at least one isolated vertex or the neighborhood of it
contains an isolated vertex.

Proof. Assume that we are standing on f of S. If f has an isolated vertex, then
it follows by Lemma 5.1 that the holonomy is a subgroup of Z/3Z. If Cl(f) has
an isolated vertex, then by Theorem 3.??, the holonomy group is isomorphic to
the holonomy when we starts at the face contains that isolated vertex, which is
Z/3Z due to Lemma 5.1.

Assume now that the holonomy group is Z/3Z, by Lemma 5.2, either f has
an isolated vertex, or all the vertices of Cl(f) are isolated, which concludes the
reverse direction.

Corollary 5.1. The holonomy group is a subgroup of Z/3Z if and only if S has
an isolated vertex.

The theorem and collorary are useful because they helps us restrict the
holonomy group to two only possible choices. Also, to generalize these claims
to non-orientable surfaces, instead of saying that the holonomy is a subgroup of
Z/3Z, we use the fact that the existence of an isolated vertex is equivalent to
the holonomy group being generated by rotations around the fixed vertex that
touches the isolated vertex in the beginning. By using this, the holonomy group
is either trivial, Z/3Z, or S3, and conversely if the holonomy is one of those,
then the initial position has an isolated vertex.

Back to orientable surfaces, this condition alone can not indicate whether
the holonomy group is Z/3Z or trivial. However, the above two claims give
us an idea to strengthen the condition of the vertexes that gives us a trivial
holonomy group.

Theorem 5.4. The holonomy group is trivial if and only if the three vertices
of the face it’s standing on are all isolated.

Proof. The reverse direction is clear. Now, assume that the holonomy group
is trivial, and assume the contradiction that one of vi is not isolated, WLOG
let it be v1. Let w 6= v1 be a neighbor of v1 such that w ∼ vi. By the similar
argument in Claim 2, there exists a roll in a loop that moves a vertex v 6= v′i ∈ S′
to touch v1, and thus gives us a non-trivial holonomy, a contradiction.

Corollary 5.2. S has trivial holonomy if and only if all vertices of S are isolated
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Now we consider which possible surfaces give us the full rotation symmetry
group or the Klein four-group V4. By the claims, this can’t happen if we are
standing on a face that has an isolated vertex. But even if we assume that the
surface S has no isolated vertices, or even that every vertex of S lies in the same
equivalence class, we can not conclude that the holonomy is A4. Indeed, one
counterexample of this is the hexagonal torus. Since the holonomy group is V4,
we can check that any vertex of the tetrahedron S′ can reach any vertices of S,
and we have only one equivalence class. So looking at these equivalence classes
of vertices alone will not tell us anything about whether the holonomy group is
V4 or A4. However, it gives a quite sufficient indication of the trivial or Z/3Z
holonomy group.

5.2 Subdivision

In this following section, we present an application of the above results to indi-
cate the holonomy of a specific kind of surfaces - subdivided surfaces.

Definition 5.3 (Subdivision). Let S be a triangulated surface. An n-subdivision
of S is a surface Sn obtained by doing the following steps:

1. For each edge {a, b} of S, we add n− 1 ”boundary” vertices

a1bn−1, a2bn−2, · · · , an−1b1.

If we are considering the edge {a, b} in the context of the face {a, b, c}, for
convenience we can also notate aibn−i ≡ aibn−icn, and a = a0bncn.

2. On each face {a, b, c} of S, we add ”internal” vertices aibjck for 2 ≤
i, j, k ≤ n− 1 such that i+ j + k = 2n.

3. Replace each face {a, b, c} of S with n2 faces determined by one of these
two forms:

{aibjck, ai+1bj−1ck, ai+1bjck−1}

for 1 ≤ j, k ≤ n, 0 ≤ i ≤ n− 1 and i+ j + k = 2n, or

{aibjck, aibj+1ck−1, ai+1bjck−1}

for 0 ≤ i, j ≤ n − 1, 1 ≤ k ≤ n and i + j + k = 2n. (where a0bncn =
a, anb0cn = b, anbnc0 = c)

To make sense of this formal definition, imagine physically that for each
edge of the triangular face f = {a, b, c}, for example {b, c}, we draw n+ 1 lines
a0, a1, a2, · · · , an parallel to that edge where an = {b, c}, a0 is the line passing
through a, and a1, a2, · · · are the lines moving far from a in this order. We choose
them in a way that they divide the edges {a, b}, {a, c} into equal segments, where
the intersections on {a, b} are denoted to be a1bn−1, a2bn−2, · · · , an−1b1. Define
bi, ci for 0 ≤ i ≤ n and aicn−i, bicn−i for 1 ≤ i ≤ n − 1 similarly. We can
see that three mutually nonparallel lines ai, bj , ck are then concur if and only if

24



i + j + k = 2n, and we define the concurrence point as aibjck. If one of i, j, k
is n, then this point will lie on the boundary edges of f . If there are two of
i, j, k equal to n, then it is one of the original vertices a, b, c. Otherwise, we
define it to be internal. Then, the identification of the new triangulation using
these points are specified as above, where the ”upward pointing” triangle has
the form {aibjck, ai+1bj−1ck, ai+1bjck−1}, and ”downward pointing” triangle
has the form {aibjck, aibj+1ck−1, ai+1bjck−1}.

Figure 8: An example of 4−subdivided triangulated face

An n−subdivision of a surface is obtained by subdividing every face in this
way. It can be easily showed that a subdivided surface is closed, and further-
more, all boundary and internal vertices have degrees 6. For convenience, we
denote Vert(S) as the set of all S−vertices, and F (S) the set of all S−faces.

Property 5.2. Vert(Sn) = Vert(S) ∪ A where A ∩ Vert(S) = ∅ and A is a
set of vertices, all have degrees 6. Furthermore, the degrees of all vertices in
Vert(S) are preserved through subdivision.

Lemma 5.5. For any integers m,n > 1, we have Smn = (Sm)n = (Sn)m.

Proof. It suffices to show that Smn = (Sm)n. Consider the mn−subdivision
Smn defined as above. Consider the surface S′ with vertices V ⊂ Vert(Smn),
where

V = {anibnjcnk | {a, b, c} ∈ F (S), 0 ≤ i, j, k ≤ m, i+ j + k = 2m}

and the set of faces F of S is defined by two forms:

1. {anibnjcnk, an(i+1)bn(j−1)cnk, an(i+1)bnjcn(k−1)} for 1 ≤ j, k ≤ m, 0 ≤ i ≤
m− 1 and i+ j + k = 2m
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2. {anibnjcnk, anibn(j+1)cn(k−1), an(i+1)bnjcn(k−1)} for 0 ≤ i, j ≤ m − 1, 1 ≤
k ≤ m and i+ j + k = 2m.

It can be easily checked by the definition that S′ = Sm. Now, we can also check
that Smn is the n−subdivision of Sm by checking that every face of one of the
above form can also be n−subdivided. Hence, Smn = (Sm)n.

Define a graph G(V,E) where V = Vert(Sn), and we connect two vertices
of V if and only if they belong to the same neighborhood Cl(f) of some face
f . For this section, we assume that S is an orientable, path-connected surface.
It can be shown by checking the definition that S2 is also orientable.

Theorem 5.6. S2 has either a trivial or Z/3Z holonomy.

Proof. We will show that in the graph G, no vertices of Vert(S) are connected
to any vertices of A. To show this, we will simply show that for an arbitrary
a ∈ Vert(S), all the neighbors of a in G are also in Vert(S). Let a1, a2, · · · , ak
be the adjacent vertices of a in the surface S (i.e. they are the vertices in the
linkage of a with respect to the surface S), and let a′1, a

′
2, · · · , a′k be the adjacent

vertices of a in the subdivided surface Sn, such that for each 1 ≤ i ≤ k, a′i is
adjacent to ai and a. For each 1 ≤ i ≤ k, let bi be the unique vertex such that
bi is adjacent to both ai, ai+1 (where ak+1 ≡ a1).

Since there are exactly k faces of Sn that contains a, a lies in exactly k neigh-
borhoods of k different faces, in particular, {a′1, a′2, b1}, · · · , {a′k−1, a′k, bk−1},
{a′k, a′1, bk}. For each 1 ≤ i ≤ k, we have Cl({a′i, a′i+1, bi}) = {a, ai, ai+1}
(we can check this easily by listing the faces adjacent to {a′i, a′i+1, bi}, using
the formal definition of subdivision as above, but it might be too detailed and
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distracted so I use a visualization to make it clear). We can see that all the
vertices that lie in the same neighborhoods of some faces with a can only be
a1, a2, · · · , ak, which are vertices of Vert(S).

So by showing this, we can conclude that every vertex in Vert(S) is isolated,
because it is only equivalent to other vertices in Vert(S), but their neighbors in
the subdivided Sn are all vertices in Vert(Sn) \ Vert(S). Hence, by Collorary
5.1, the holonomy is a subgroup of Z/3Z.

Corollary 5.3. If n is even, then Sn has either a trivial or Z/3Z holonomy.

Proof. Let n = 2k. Since Sn = (Sk)2, and Sk is closed, then Sn is a 2−subdivision
of a closed surface Sk. By Theorem 5.6, the holonomy of Sn is a subgroup of
Z/3Z.

Generally, for any surface S (orientable or not), subdividing it by an even n
will turn all vertices of S into isolated vertices. From this, we can conclude the
holonomy group, depends on whether it is orientable or not.

Turning back to orientable S, we can actually distinguish more whether S2

has the holonomy Z/3Z or trivial with this following claim.

Lemma 5.7. If S is a finite, connected surface having a vertex with a degree
not divisible by 3, then all the vertices in Vert(S2) \Vert(S) are equivalent.

Proof. Let a ∈ Vert(S) be a vertex with a degree not divisible by 3. We
will reuse the notations from Theorem 5.6. We have for any i, a′i, a

′
i+3 ∈

Cl({a, a′i+1, a
′
i+2}), since {a, a′i, a′i+1}, {a, a′i+2, a

′
i+3} are adjacent to {a, a′i+1, a

′
i+2}.

Thus, a′i ' a′i+3. Since 3 - δ(a), for any i, there exists k such that kδ(a) + i ≡ 1
(mod 3). So we will have a′1 ' a′3h+1 ' a′kδ(a)+i ≡ a

′
i, so all a′i are equivalent.

Also, note that since {bi, a′i, a′i+1}, {a, a′i+1, a
′
i+2} are adjacent to {a, a′i, a′i+1},

we have b, a′i+2 ∈ Cl({a, a′i, a′i+1}), so bi ' a′i+2 ' a′1 for any i, and all bi are
equivalent to a′i as well.

From this, we can see that each ai has three equivalent neighbors, namely
bi, bi+1, a

′
i. By the same reasoning as above, each neighbor of ai must be equiv-

alent to one of these consecutive vertices, and since they are all equivalent, all
neighbors of ai are also equivalent. Then, we can repeat the same argument
for a above to all ai, and then to all the neighbors of ai in S, and so on, until
it spreads to all the vertices of S, which is possible since S is finite and con-
nected. From this, we can conclude that all the vertices of Vert(S2) \ Vert(S)
are equivalent.

Theorem 5.8. If S has a vertex with degree not divisible by 3, then S2 has
holonomy Z/3Z.

Proof. Assume that it has trivial holonomy, then by Corollary 5.2, it has all
vertices isolated. However, this contradicts Lemma 5.7. Hence it must be Z/3Z
due to Theorem 5.6.

It is also easy to generalize this claim to any even n, noting that a subdivision
preserves degrees of the original vertices, and S2k is simply a 2−subdivision of
Sk.
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5.3 Restricting holonomy to non-orientable using equiva-
lence classes

Recall from the previous results, we have shown that the holonomy when rolling
the tetrahedron over a surface that has an isolated vertex is a subgroup of Z3.
The idea to generalize to any surfaces (orientable or not), is to notice that the
existence of an isolated vertex is equivalent to having a holonomy group that
fixes a vertex. It means that the holonomy is a subgroup of Sn that contains
the permutations that fix a specific vertex x of the tetrahedron.

Theorem 5.9. S has an isolated vertex if and only if the holonomy group fixes
a vertex of the tetrahedron

Proof. Assume that S has an isolated vertex v and the tetrahedron is in a
position p = {(x, v), · · · }, and assume for the contradiction that there exists a
rolling of the tetrahedron in some loop that we get a position p′ = {(x′, v), · · · }
for x′ 6= x. Then, either x is touching one of v’s neighbors, or x is not touching
the surface S at the moment, but after a roll we can bring x to touch any
neighbor of v. In either ways, there is a neighbor of v that is equivalent to v,
which contradicts the assumption that v is an isolated vertex.

The inverse part is pretty trivial, since if v is not isolated, then there will be
a neighbor v′ ' v of v, and then we roll to a position {(x, v′), · · · }, and then we
can roll to a position that x is not the vertex that touches v, which gives the
contradiction.

Note that since the tetrahedron is a maximally symmetric surface, we can
conclude about the holonomy group based on the holonomy that we derive
locally. So we have an important corollary:

Corollary 5.4. S has an isolated vertex if and only if the holonomy group is a
subgroup of S3.

Note that if S is orientable, it’s impossible to have Z2, S3, and inversely, if
S is non-orientable, then it’s impossible to have trivial or Z3 holonomies, since
Z3 subgroup of S3 contain only even permutations, but if S isnon-orientable
then it must have an odd permutation in the holonomy. We develop criteria for
non-orientable surfaces that have Z2 and S3 holonomy. Assume that S has an
isolated vertex (note that this assumption is really important).

Criterion 1 (Z2 − (a, b) holonomy). S has Z2 holonomy if and only if it has
two adjacent isolated vertices, but not every vertex of S is isolated.

Remark. If S has two adjacent isolated vertices, but not every vertex of S is
isolated, then S is non-orientable.

Remark. If S is orientable and it has two isolated adjacent vertices, then all
vertices of S are isolated and S has trivial holonomy.

Criterion 2 (S3 holonomy). S has S3 holonomy if and only if it has an isolated
vertex that has all neighbors not isolated.
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So to sum up this part, we have this table to indicate holonomy group for
surfaces that have at least one isolated vertex.

Holonomy group Orientable Non-orientable
Trivial all vertices are isolated don’t exist
Z/2Z don’t exist there are two adjacent isolated vertices,

but not all vertices are isolated.
Z/3Z not all vertices are isolated, don’t exist

but there is one.
S3 don’t exist there is an isolated vertex that

has all neighbors not isolated.

Table 5: Criteria for identifying holonomy groups
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